Малошумящие зарядочувствительные усилители для гибридных активных точечных детекторов

В. Барзденас, Р. Навицкас, Р. Пятраускас

Вильнюсский технический университет имени Гядиминаса, факультет электроники, кафедра компьютерной инженерии, vaidotas.barzdenas@el.vgtu.lt

Приборы на основе гибридных Аннотаиия точечных детекторов всё чаще используются для рентгеновских формирования мелицинских изображений в целях диагностики. Рассмотрены физические принципы работы и устройство гибридного точечного детектора. Созданы GaAs зарядочувствительные усилители, для точечных детекторов медицинских исследованиях. в c эквивалентным шумовым зарядом (ЭШЗ) менее 200 электронов, коэффициентом преобразования от 37,7 до 40,5 мВ/фКл и потребляемой мощностью менее 1 мВт. Длительность фронта выходного импульса равна 8,5 нс. Входная ёмкость Сдет изменялась от 0,05 до 0,2 пФ, а входной сигнал – от 1 до 50 фКл.

Ключевые слова — Гибридный активный точечный детектор, зарядочувствительный усилитель, эквивалентный шумовой заряд, GaAs и КМОП технологии.

I. Введение

Индуцированный электрический заряд одной частицы сравнительно небольшой, поэтому обычно сначала сигнал детектора непосредственно в самой зоне облучения усиливается зарядочувствительными усилителями (ЗЧУ). Зарядочувствительные схемы первичного усиления сигнала применяются в ряде областей техники и науки. В частности, в экспериментальной физике их применяют с целью получения информации об энергии зарегистрированных микрочастиц. В целом, они предназначены для усиления импульсов малой амплитуды, часто сравнимых с шумовыми сигналами, и формирования импульсов напряжения требуемой формы [1].

Первые системы были изготовлены из кремния. Однако, их недостаточная радиационная стойкость направила на поиски создания новых детекторных систем на основе арсенида галлия (GaAs), известного как более радиационно-стойкий материал.

В последние годы всё чаще обсуждается роль ионизирующих излучений в медицине и ощутимый повреждающий эффект в результате их широкого использования в диагностических целях. Вопросы радиационной безопасности, средств защиты, контроля в лучевой диагностике стали самой актуальной темой в промышленности медицинской техники. Принципом формирования медицинских рентгеновских изображений является получение максимума диагностической информации при минимально возможных уровнях облучения.

Нами разработаны наиболее чувствительные GaAs ЗЧУ для точечных детекторов в дентографии и маммографии с эквивалентным шумовым зарядом менее 200 электронов.

II. Гибридные точечные детекторы

Полупроводниковые точечные детекторы первоначально использовали для исследования физики высокоэнергетичных элементарных частиц, из-за ИХ низкого шума, высокой степени контрастности, хорошей пространственной разрешающей способности. Они обеспечивают эффективность высокую рентгеновского обнаружения, по сравнению с газовыми сенсорами рентгеновскими стандартными или плёнками, поэтому стали объектом исследования в медицине, конкретно в маммографии и дентографии [2], [3].

Существуют две разновидности полупроводдетекторов: устройства с никовых точечных поверхностно зарядовой связью (ПЗС) и активные точечные детекторы (АТД). Каждая точка АТД, в отличие от ПЗС матриц, содержит не только детекторный элемент (диод), но также и активнотранзисторную схему для считывания сигнала с точки. Технология КМОП или ПТШ позволяет интегрировать всю систему формирования изображения, включая массив светочувствительных элементов и управляющие схемы, на одном кристалле. АТД могут быть монолитными или гибридными. Когда невозможно или нецелесообразно изготовлять детектор и считывающую электронику (СЭ) в одном кристалле, их изготовляют на разных подложках, а затем соединяют. Такой гибридный тип АТД показан на рис. 1. Преимуществом гибридных АТД является возможность отдельной оптимизации параметров детектора и СЭ. Это обеспечивает большую гибкость выбора материала детектора. Тем не менее, гибридные АТД должны удовлетворять требования радиационностойкости, механической устойчивости, большого времени на отказ, ошибкоустойчивости, гибкости в технологии их изготовления и, в конечном счете, низкой цены.

Рис. 1. Гибридный активный точечный детектор

Основной частью гибридных точечных детекторных систем является детектор, представляющий собой конденсатор из Si, или GaAs, СdTe или CdZnTe [4], [5]. Под действием рентгеновского излучения в детекторе возникает электрический заряд, величина которого зависит от энергии излучения. Полученный сигнал слишком мал для самостоятельного использования, поэтому он проходит через зарядочувствительные усилители. После этого происходит обработка аналогового сигнала и преобразование его в цифровой. Затем, в цифровом процессоре сигналов или с помощью специального программного обеспечения, происходит интерполяция и коррекция информации. После этого полученные данные преобразуются в формат, с которым можно работать пользователю, и выводятся на экран монитора.

При изготовлении гибридных точечных детекторов ионизирующего излучения соединение детекторной матрицы со считывающим устройством осуществляется с помощью столбиковых выводов или шариков, по флип-чип-технологии [1], [6].

III. РАСЧЕТ И АНАЛИЗ GAAS ЗАРЯДОЧУВСТВИТЕЛЬНЫХ УСИЛИТЕЛЕЙ

Один канал регистрирующей системы можно разделить на такие основные составные части: детектор, предусилитель (ПУ), усилительформирователь (УФ), и устройства дальнейшей цифровой обработки (рис. 2). Падающие элементарные частицы индуцируют на входе ПУ небольшой токовый дельта-импульс, который необходимо усилить. С выхода ПУ сигнал, пропорциональный энергии излучения, поступает в блок УФ импульсов и преобразуется в импульс квазигауссовой формы.

Амплитуда и длительность полезного сигнала, наряду с ёмкостным характером детектора, требуют проведения специальной обработки, которая заключается в преобразовании токового импульса в напряжение, достаточное для работы последующих блоков, оптимальной фильтрации для увеличения отношения "сигнал/шум".

Далее, сигнал с УФ поступает на анализатор импульсов на основе аналого-цифрового преобразователя (АЦП), после чего проводят его дальнейшею цифровую обработку (ЦО). Блок-схема системы обработки сигнала детектора показана на рис. 2.

Рис. 2. Блок – схема одного канала системы обработки сигнала детектора: С_{ДЕТ} – детектор; ПУ – предусилитель; УФ – усилитель-формирователь; АЦП – аналого-цифровой преобразователь; ЦО – цифровая обработка

Улучшение разрешающей пространственной способности систем регистрации частиц достигается увеличением количества детекторов. Соответственно, системы разрабатывают многоканальными с требованиями минимальной потребляемой мощности и размеров [7], [8]. Кроме того, чувствительность и надёжность системы выделения сигнала определяют шумы детектора и ЗЧУ.

Для разработки GaAs 3ЧУ были следующие основные технические требования: входная ёмкость точечных детекторов – С_{дет} изменялась от 0,05 до 0,2 пФ, входной сигнал $Q_{вx}$ – от 1,6 до 20 фКл, (10^4 ...1,25 · 10^5 электронов), фронт выходного импульса τ_{ϕ} – менее 10 нс, коэффициент преобразования К – от 30 до 45 мВ/фКл, эквивалентный шумовой заряд ЭШЗ – менее 200 электронов, а потребляемая мощность Р – не более 1 мВт.

Основные параметры ЗЧУ получены моделированием с помощью САDENCE программного пакета. Параметры транзисторов для моделирования получены из экспериментов или вычислены для технологии изготовления эпитак-сиальных арсенид-галлиевых полевых транзисторов с барьером Шотки, длина затвора которых 1 мкм и менее, с применением процессов самоформирования для получения более низких значений сопротивлений стока (истока) и затвора [8], [9]. Для регистрации заряда, наиболее оптимальной формой выходного импульса есть равносторонний треугольник. Мы применили ближнее его отображение – колоколообразный (квазигауссовый) биполярный импульс, один и/или более раз интегрируя сигнал.

Входной сигнал задавался ступенькой, имел форму токового дельта импульса с зарядом $Q_{BX} = 1, 10, 20, 50$ фКл. Собственная ёмкость детектора $C_{дет}$ имитировалась конденсатором 0,2 пФ. Выходной сигнал $Q_{BX} = 1$ фКл, ЗЧУ показан на рис. 3. Видно, что длительность фронта выходного импульса не превышает 8,5 нс, а коэффициент преобразования около 37,7 мВ/фКл.

Зависимость эквивалентного шумового заряда ЭШЗ от фронта выходного импульса показана на рис. 4 а. Эта зависимость - квадратная функция с одним глобальным минимумом, который равен минимуму шума, т.е. 184 электронам, когда длительность фронта выходного импульса 8,5 нс. В левой стороне от минимума, значения функции увеличиваются от воздействие последовательного шума, а в правой - от параллельного шума. Надо сказать, что низкочастотная составляющая шума не зависит от длительности фронта, т.е. она постоянна и в нашем равна 88 электронам. Изменение случае параллельного противоположно шума последовательному шуму, увеличивая т.е. длительность фронта, воздействие параллельного шума уменьшается. Итак, надо найти такой уровень ЭШЗ, который бы соответствовал минимуму последовательного и параллельного шума. Этот минимум и характеризовал бы оптимальную пространственную и временную разрешающую способность системы и увеличил бы отношение "сигнал/шум".

ЗЧУ часто используется в окружающей среде с низкими температурами. При охлаждении, ЭШЗ усилителя линейно уменьшается, например, ЭШЗ уменьшается на 120 электронов при изменении температуры от плюс 120°С до минус 60°С. Коэффициент преобразования при температуре минус 60°С увеличивается до 40,5 мВ/фКл (рис. 4 б.). ЭШЗ увеличивается при уменьшения сопротивление нагрузки (рис. 4 в.). Для нагрузки в 50 Ом получены минимальные значения ЭШЗ. Однако, в этом случае потребляемая мощность увеличилась до 2,4 мВт. Если нагрузка равна 1 МОм, то ЭШЗ равен 185 электронам, а потребляемая мощность – 0,94 мВт, т.е. выросла 2,5 раза. Это повышение употребляемой мощности наиболее связано с повышением выходного тока. Увеличение мощности нежелательно, так как из детекторов и ЗЧУ создаётся матрица размером 256×256 точек (каналов).

Рис. 4. Функциональные зависимости GaAs ЗЧУ основных электрических параметров: а – зависимость ЭШЗ от фронта выходного импульса; б – зависимость ЭШЗ и коэффициента преобразования от температуры окружающей среды, Q_{вх} = 10 фКл, R_L = 1 МОм, C_L = 2,5 пФ; в – зависимость ЭШЗ и мощности потребления при разных нагрузках, C_{ДЕТ}=0,2 пФ, Q_{вх} = 10 фКл, нагрузка C_L=2,5 пФ.

Основная цель моделирования – уменьшить потребляемую мощность и эквивалентный шумовой заряд, или найти оптимум между этими характеристиками. При увеличении сопротивления нагрузки, ЭШЗ постепенно возрастает. При нагрузках в 1 кОм, 10 кОм, 100 кОм и 1 МОм, ЭШЗ, соответственно, около 134, 147, 159 и 185 электронов, а потребляемая мощность уменьшается от 1,04 до 0,94 мВт.

IV. ПРОЕКТИРОВАНИЕ КМОП ЗАРЯДОЧУВСТВИТЕЛЬНЫХ УСИЛИТЕЛЕЙ

Как было упомянуто выше, для достижения высокого качества преобразования АТД, необходимо уменьшать размеры одной точки детектора. По этой причине надо разработать интегральную схему с минимальной потребляемой мощностью [10]. Для этого были разработаны ЗЧП с дифференциальным каскадным усилителем и с компенсацией утечки тока для субмикронной 90 нм КМОП технологии, в которой транзистор ПМОП используется как резистор обратной связи. Преимущество таких ЗЧП низкий уровень шума, высокое быстродействие, а применённые каскады позволяют уменьшить эффект Миллера, т.е. уменьшить входную ёмкость и увеличить коэффициент преобразования при минимальной потребляемой мощности.

Цифровая часть содержит 13-ти битовый псевдослучайный регистр, работающий в двух режимах: считывания длительности сигнала, которая соответствует величине электрического заряда, и вывода сигнала от точки к точке для преобразования в формат, доступный пользователю. Цифровой частью управляет арбитражный блок, построенный на RS-триггерах, который устраняет шумовые сигналы [11].

Компьютерное моделирование было выполнено при помощи программных пакетов SPICE, используя IBM КМОП 90 нм транзисторные BSIM4 модели. Предусилитель имеет униполярный выход с длительностью фронта выходного импульса 35...45 нс и с коэффициентом преобразования приблизительно 60 ... 90 мВ/Кэ. Эквивалентный шумовой заряд – меньше чем 160 ё, при входном сигнале Q_{вх}=1...10 кё и входной ёмкости точечных сенсоров C_{дет} = 30 фФ.

V. ЗАКЛЮЧЕНИЕ

Для существенного уменьшения лучевой нагрузки на пациента, при получении рентгеновских изображений, необходимо использовать гибридные точечные детекторы, обеспечивающие высокую контрастность изображения, эффективность рентгеновского обнаружения, радиационностойкость, большое время на отказ и гибкость в технологии изготовления. Разработаны маломощные арсенид галлиевые интегральные схемы зарядочувствительных усилителей для точечных детекторов в дентографии и маммографии, а также для исследования физики высокоэнергетичных элемен-тарных частиц с эквивалентным шумовым зарядом менее 200 электронов и коэффициентом преобразо-вания от 37,7 до 40,5 мВ/фКл, длительностью фронта выходного импульса 8,5 нс при потребляемой мощности 0,9 мВт.

ЛИТЕРАТУРА

- [1] Навицкас Р., Пожела Ю., Морозов В., С. Ашмонтас. Зарядочувствительные GaAs усилители для микрополосковых и точечных детекторов // Электроника и связь. - 2000, Т. 2, № 8, С. 204-207.
- [2] Bisogni M.G., Delogu P., Fantacci M.E. A Medipix2-Based Imaging System for Digital Mammography With Silicon Pixel Detectors // IEEE Transactions on Nuclear Science. - 2004. - V. 51. - № 5. - P. 3081 – 3085.
- [3] Amendolia S.R., Bertolucci E., Bisogni M.G. Medipix: A VLSI chip for a GaAs Pixel detector for digital radiography // Nuclear Instruments & Methods in Physics Research Section. 1999. V. A422. P. 201 205.
 [4] Navickas R., Barzdenas V. The Hybrid Pixel Sensors and
- [4] Navickas R., Barzdenas V. The Hybrid Pixel Sensors and Read-Out Electronics. Solid State Phenomena // Mechatronic Systems and Materials. - 2006. - V. 113. - P. 453 – 459.
- [5] Schwarz C., Campbell M., Goeppert R. X-ray Imaging using a hybrid photon counting GaAs pixel detector // Nuclear Physics B-Proceedings Supplements. - 1999. - V. 78.
 - P. 491 – 496.
- [6] Bardelloni G., Bertolucci E. A new read-out system for an imaging pixel detector // IEEE Nuclear Science Symp. Medical Imaging Conf. - 2000. - P. 57 – 60.
- [7] Campbell M., Heijne E. H. M., Meddeler G., Pernigotti E. A readout chip for a 64 x 64 pixel matrix with 15-bit single photon counting // IEEE Transactions on Nuclear Science. - 1998. - V. 45. - № 3. - P. 751 – 753.
- [8] Навицкас Р., Барзденас В. Расчет и анализ GaAs зарядочувствительных усилителей // Электроника и электротехника. Каунас: Технология. - 2005. - № 6(62). - С. 47–51 (на литовском языке, реф. на английском и русском языках).
- [9] Bareikis V., Dzindzelėta B., Matulionis A., Navickas R. Low noise and power integrated preamlifiers on GaAs MESFETs // Proceedings of 10-th Workshop "GaAs Detectors and Electronics for High-Energy Physics". Singapore. - 1992. - P. 55 – 59.
- [10] Llopart X., Campbell M., Dinapoli R., SanSegundo D. Medipix2: A 64-k pixel readout chip with 55- µm square elements working in single photon counting mode // IEEE Transactions on Nuclear Science. - 2002. - V. 5. - № 5. - P. 2279 – 2283.
- [11] Balladriga R., Campbell M., Heijne E. H. The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance // IEEE Transactions on Nuclear Science. - 2007. - V. 54. -№ 5. - P. 1824 – 1829.