Радиационно-стойкие инструментальные усилители на АБМК

А.Е. Титов¹, О.В. Дворников²

¹ЦП СБИС «система на кристалле» при ТТИ ЮФУ, МНТЦ «МикАн», alehan_26rus@mail.ru

²ОАО «МНИПИ», Беларусь, г. Минск, МНТЦ «МикАн», oleg_dvornikov@tut.by

Аннотация — Рассматриваются результаты проектирования структурно-оптимальных принципиальных схем радиационно-стойких инструментальных усилителей на базе мультидифференциальных операционных усилителей, обладающих высокими метрологическими свойствами в условиях радиационного воздействия. Показано, что использование радиационно-стойких мультидифференциальных операционных усилителей на компонентах АБМК в структуре инструментальных усилителей позволяет получить высокие качественные показатели этих устройств при воздействии гаммы дестабилизирующих факторов. Приводятся результаты моделирования принципиальных схем инструментальных усилителей.

Ключевые слова — радиационная стойкость, инструментальный усилитель, МОУ, коэффициент ослабления синфазного сигнала, АБМК.

I. Введение

Создание радиационно-стойких аналоговых и аналого-цифровых интерфейсов (АИ и АЦИ) смешанных систем в корпусе (СвК), ориентированных на взаимодействие с чувствительными элементами (сенсорами) мостового типа, предполагает применение инструментальных усилителей (ИУ) как с фиксированными, так и управляемыми параметрами, выполняющих функции подавления синфазного сигнала и усиление дифференциального напряжения. Эти устройства являются основой как для аналоговых портов, так и для целого класса сложно-функциональных блоков (СФ-блоков) СвК. Как с экономической, так и с технической точек зрения, такие СФ-блоки в виде полупроводниковых кристаллов целесообразно ориентировать на технику соответствующих аналоговых базовых матричных кристаллов (АБМК), среди которых апробацию на целом классе ИС прошел биполярно-полевой АБМК 1 3 [1]. Как показывает практика [2], использование лишь радиационно-стойкой технологии АБМК без изменения структуры ИУ и схемотехники ряда узлов не позволяет обеспечить бесперебойную работу устройства в условиях радиационного воздействия свыше 50крад, поэтому необходимо дальнейшее развитие схемотехнических решений, направленных на повышение качественных показателей устройства при воздействии дозы радиации, потока нейтронов, температуры.

II. Постановка задачи

Классическая структура инструментального усилителя включает в себя три операционных усилителя (ОУ) и семь прецизионных резисторов [3] и характеризуется высокой погрешностью коэффициента передачи синфазного напряжения (1), который в соответствии с результатами работы [4] непосредственно определяется погрешностью резистивных элементов (Θ_R) активного сумматора (рис. 1).

Рис. 1. Классическая структура ИУ

Коэффициент передачи синфазного сигнала К_{ен} в таком инструментальном усилителе зависит от погрешности соотношений резистивных элементов в структуре сумматора [4]

$$\mathbf{K}_{_{\mathrm{CH}}} \approx \Theta_{\mathrm{R}} \ . \tag{1}$$

Так, в условиях радиационного воздействия изменение номиналов резистивных элементов для технологии АБМК составляет 1,5%, что приведет к значительному (до 30дБ) снижению коэффициента ослабления синфазного сигнала К_{оссн}.

Кроме того, погрешность синфазных напряжений U_{cH} на выходе операционных усилителей ОУ1 и ОУ2 зависит от погрешности отношения резисторов R_{oc1} , R_{oc2} и г (рис. 1). В [4] показано, что для обеспечения независимости этих напряжений необходимо реализовать высокий коэффициент ослабления синфазного сигнала K_{occh} во входных каскадах ОУ1 и ОУ2. Максимальное напряжение на выходах ОУ1 и ОУ2 будет определяться из следующих соотношений

$$U_{out_{1}} = U_{cH} - \frac{R_{oc1}}{r} U_{\pi}, U_{out_{2}} = U_{cH} + \frac{R_{oc2}}{r} U_{\pi}, \quad (2)$$

где U_{ch} - синфазное напряжение на выходе ОУ1 или ОУ2, U_{d} - дифференциальное напряжение на входе ИУ.

В [4] показано, что даже при идеальных резистивных элементах и линейных ОУ предельное значение

коэффициента передачи синфазного напряжения зависит от К_{оссн} операционных усилителей.

III. Инструментальный усилитель на базе МОУ

Решением указанных проблем является использование в структуре радиационно-стойкого ИУ мультидифференциального операционного усилителя (МОУ) на компонентах биполярно-полевого АБМК_1_3 (рис. 2).

Рис. 2. Инструментальный усилитель на одном МОУ

Преимуществом такого инструментального усилителя является относительно небольшое энергопотребление за счет использования в его структуре только одного активного элемента. Реализуемый дифференциальный коэффициент определяется соотношением

$$\mathbf{K}_{\mathrm{p}} = (1 + \frac{\mathbf{R}}{\mathbf{r}}), \qquad (3)$$

причем

$$\mathbf{K}_{\rm ch} = \mathbf{K}_{\rm occh} \cdot \mathbf{K}_{\rm g}, \qquad (4)$$

$$\mathbf{U}_{\mathrm{AD}} = \mathbf{E}_{\mathrm{CM}} \cdot \mathbf{K}_{\mathrm{A}} \,, \tag{5}$$

где E_{cm} – ЭДС смещения нуля, таким образом, максимально реализуемый дифференциальный коэффициент усиления ИУ будет ограничиваться допустимым значением напряжения дрейфа нуля $U_{дp}$ и коэффициента передачи синфазного напряжения K_{cm} .

Как видно из (4) даже реализация высокого коэффициента ослабления синфазного сигнала не позволит существенно повысить дифференциальный коэффициент усиления схемы ИУ в силу доминирующего влияния К_д на напряжение дрейфа нуля схемы (5).

Таким образом, успешная реализация радиационно-стойкого инструментального усилителя связана с разработкой мультидифференциального ОУ, в структуре которого схемотехнические решения должны быть направлены на минимизацию $E_{\rm см}$.

С этой целью в разработанном мультидифференциальном операционном усилителе минимизировано количество каскадов усиления, причем во входных дифференциальных каскадах дополнительно введены динамические нагрузки, работа которых направлена на повышение статического коэффициента усиления МОУ, что и приводит к уменьшению ЭДС смещения нуля.

Кроме того, для технологии радиационно-стойкого АБМК наибольшей радиационной стойкостью обладают полевые p-JFET и биполярные n-p-n транзисторы, а наименьшей – боковые транзисторы p-n-р типа (при нейтронном облучении возникает деградация коэффициента усиления тока базы [6]). Поэтому при построении мультидифференциальных операционных усилителей необходимо исключить возможность применения p-n-p транзисторов в режимозадающих частях схемы. Так, в разработанном радиационно-стойком МОУ реализация источников тока осуществлялась на n-p-n транзисторах, причем ток задавался "снизу", а также пересмотрены традиционные решения по проектированию динамических нагрузок.

Рис. 3. Динамическая нагрузка с п-р-п транзистором

На рис. 3 показан вариант динамической нагрузки (ДН) на p-n-p с введенным транзистором n-p-n VT5 для стабилизации режимов работы при воздействии радиации. В такой структуре дифференциальное сопротивление ДН, а также стабилизация режимов её работы при радиационном воздействии определяется параметрами n-p-n транзистора.

Не менее существенным фактором является изменение режимов работы основных PADJ транзисторов при воздействии гаммы дестабилизирующих факторов, что вызвано изменением токов, протекающих во входных цепях усилителя. Поэтому в структуре разработанного радиационно-стойкого МОУ предусмотрена стабилизация входных токов в условиях воздействия радиации с помощью введенных дополнительных контуров обратных связей. Кроме этого, увеличение этих токов (≥250мкА) способствует повышению линейности входных цепей МОУ при воздействии гаммы дестабилизирующих факторов.

Совокупность указанных особенностей позволила разработать набор мультидифференциальных ОУ для реализации радиационно-стойких ИУ.

Результаты моделирования инструментального усилителя на базе такого МОУ (рис. 2) в среде PSpice при $K_{_{\rm A}}$ =20дБ приведены в таблице 1. Таким образом, разработанный инструментальный усилитель способен

бесперебойно работать в условиях воздействия гамма излучения до 500 крад, потока нейтронов до $5\cdot10^{13}$ н/см² и в диапазоне температур от -40° С до $+80^{\circ}$ С, но, как это и отмечалось ранее, доминирующим фактором, определяющим результирующую погрешность, является дрейф нуля схемы. Следовательно, основным недостатком такой реализации инструментального усилителя является зависимость напряжения дрейфа нуля от реализуемого дифференциального коэффициента усиления.

IV. Двухканальный инструментальный усилитель на базе МОУ

Для независимости напряжения дрейфа нуля от реализуемого дифференциального коэффициента усиления необходимо использовать классическую двухканальную структуру (рис. 1), где сумматор и канальные ОУ выполнены на базе МОУ (рис. 3), что позволяет исключить резистивные элементы из структуры сумматора и повысить ослабление синфазного напряжения.

Напряжение дрейфа нуля такого инструментального усилителя определяется следующим соотношением:

$$U_{\rm дp. MY} = U_{\rm dp. MOY1} - U_{\rm dp. MOY2} + U_{\rm dp. MOY3},$$
 (7)

тогда с учетом того, что ИУ, включающий все МОУ, выполняется на одном кристалле, а МОУ3 использует-

ся только в качестве сумматора (К_{д.МОУ 3} =1), можно утверждать

$$U_{\rm Ap.\,HY} = U_{\rm Ap.\,MOY\,3} = K_{\rm A.\,MOY\,3} E_{\rm cm.\,MOY\,3} = E_{\rm cm.\,MOY\,3}.$$
 (8)

Таким образом, при радиационном воздействии напряжение дрейфа нуля ИУ будет зависеть только от ЭДС смещения МОУЗ.

Рис. 4. Двухканальный ИУ на базе МОУ

Кроме того,

$$K_{cH} = \frac{R}{r} (K_{occH_1} - K_{occH_2}) K_{occH_3}, \qquad (9)$$

где К_{оссн,} - коэффициент ослабления синфазного сигнала i-го МОУ дополнительно уменьшается активным

Таблица 1

параметр	К _д ,	f _{гр_д} ,	К _{сн} ,	f _{гр_сн} ,	U _{др} ,	υ,	t _π ,	U _{BX-} ,	U _{вых –} ,	$U_{_{BX^+}}$,	U _{BbIX +} ,
воздеиствие	дБ	ΜΓц	дБ	кГц	мкВ	В/мкс	мкс	В	В	В	В
$F_n = 0$, $D = 0$, $t^\circ = 0$	20	2,9	-117	3,5	-338	39 86	0,3 0,35	-0,32	3,2	-0,23	-2,3 3,22
$F_n = 5 \cdot 10^{13} \text{H/cm}^2$	20	3	-113	0,86	-88	73 79	0,32 0,34	-0,32 0,36	3,2	-0,23	-2,3 3,22
D =100 крад	20	3	-115	3,4	-212	80 89	0,33 0,30	-0,32 0,38	3,22 -3,80	-0,23 0,32	-2,3 3,20
D =500 крад	20	2,8	-141	0,07	-5,3	75 82	0,30 0,26	-0,33	3,2	-0,23 0,32	-2,26
$t^{\circ} = -40^{\circ} C$	20	3,5	-147	0,12	-8,6	89 102	0,26 0,29	-0,32 0,38	3-3,80	-0,30 0,30	-3 3
$t^{\circ} = +80^{\circ} C$	20	2,5	-109	4,3	-577	66 68	0,56 0,29	-0,30 0,38	3,2 -3,40	-0,16 0,32	-1,6 3,20
$F_n = 5 \cdot 10^{13} \text{H/cm}^2$,	20	3,1	-106	4,7	+327	61	0,30	-0,31	3,1	-0,30	-3
D =500крад, $t^{\circ} = -40 \circ C$						84	0,30	0,36	-3,58	0,30	3
$F_n = 5 \cdot 10^{13} \text{H/cm}^2$,	20	2,4	-109	7,9	-241	56	0,56	-0,31	3,1	-0,17	-1,68
D =500крад, $t^{\circ} = +80^{\circ}$ С						60	0,29	0,35	-3,54	0,32	3,20

Результаты моделирования инструментального усилителя рис. 2

Примечание: $\delta_{K_{\pi}}$ - погрешность дифференциального коэффициента усиления < 0,2%, K_{π} - коэффициент усиления дифференциального сигнала, $f_{rp_{\pi}}$ - граничная частота K_{α} , K_{α} - коэффициент ослабления синфазного напряжения, $f_{rp_{\pi}}$ - граничная частота K_{α} , $U_{\pi p}$ - напряжение дрейфа нуля усилителя, υ - скорость нарастания импульса по положительному и отрицательному фронтам, t_{π} - длительность переходного процесса выходного сигнала, $U_{cu} = -2.5/+5B$ - допустимые входные напряжения при подаче синфазного сигнала на входы усилителя, U_{mx-} и U_{mx+} - входные и выходные граничные напряжения при подаче дифференциального сигнала на положительный вход усилителя соответственно, U_{mx+} и U_{mx+} - входные и выходные граничные напряжения при подаче дифференциального сигнала на положительный вход усилителя соответственно, U_{mx+} и U_{mx+} - входные и выходные граничные напряжения при подаче дифференциального сигнала на положительный вход усилителя соответственно, $E_{n} = \pm 5B$ - напряжения питания, $I_{n} = \pm 15$ мА - токи потребления.

r esystematical should all an emply showing the should be a set of the set of												
пар	аметр	К _д ,	$f_{rp_{\mathcal{A}}}$,	$K_{_{CH}}$,	$f_{rp_{ch}}$,	$U_{_{\mathcal{A}p}}$,	υ,	t_{π} ,	$U_{_{BX-}}$,	$U_{\scriptscriptstyle BbIX-}$,	$U_{_{B\!X+}}$,	$U_{\scriptscriptstyle BbIX+}$,
воздействие		дБ	кГц	дБ	кГц	мкВ	В/мкс	мкс	мВ	В	мВ	В
$F_n = 0$, $D = 0$, $t^\circ = 0$	= 0	60	53	-140	1,4	-173	0,8	14	-3	2,96	-1,6	-1,62
							0,5	/ 13	1,6	-1,61	3	2,96
$F_n = 5 \cdot 10^{13} \text{H/cm}^2$	2	60	51	-140	1,4	-44	0,75	12	-3	2,96	-1,6	-1,62
							0,5	/ 15	1,6	-1,61	3	2,96
D =100 крад		60	53	-140	1,4	-108	0,8	10	-3	2,96	-1,5	-1,52
							0,5	/ 13	1,5	-1,52	3	2,96
D =500 крад		60	50	-140	1,45	-3	0,75	12	-3	2,96	-1,5	-1,51
_							0,5	14	1,5	-1,51	3	2,96
$t^{\circ} = -40^{\circ} C$		60	63	-140	1,6	-5	0,85	9	-3	2,96	-1,0	-1,0
							0,55	14	1,5	-1,51	3	2,96
$t^{\circ} = +80^{\circ} C$		60	46	-140	2,6	-287	0,75	10	-3	2,96	-1,68	-1,69
							0,46	15	1,6	-1,60	3	2,96
$F_{\rm H} = 5 \cdot 10^{13} \text{H/cm}^2$		60	56	-140	1,6	+163	0,8	10	-3	2,96	-1,0	-1
	,											
D =500крад, t° = -4	0°C						0,55	/ 15	1,5	-1,51	/ 3	2,96
$F_{\rm H} = 5 \cdot 10^{13} \text{H/cm}^2$		60	43	-140	2,6	-115	0,8	14	-3	2,96	-1,68	-1,69
	· .											
D =500крад, t° = +8	0°C						0,45	15	1,6	-1,60	/ 3	2,96

Результаты моделирования инструментального усилителя рис. 4

Примечание: $\delta_{K_{c}}$ - погрешность дифференциального коэффициента усиления < 0,4%, $U_{cu} = -2.5/+5 \,\mathrm{B}$ - допустимые входные напряже-

ния при подаче синфазного сигнала на входы усилителя, $E_n = \pm 5B$ - напряжения питания, $I_n = \pm 70$ мА - токи потребления.

сумматором. Также необходимо отметить, что использование МОУ1 и МОУ2 (рис. 4) вместо ОУ1 и ОУ2 (рис. 1) позволяет ослабить синфазное напряжение U_{cH} на входах сумматора МОУ3 и, следовательно, повысить эффективность использования амплитудной характеристики МОУ1 и МОУ2.

Результаты моделирования ИУ в среде PSpice при дифференциальном коэффициенте усиления 60 дБ представлены в табл. 2, среди которых видно, что напряжение дрейфа нуля как при реализуемом дифференциальном коэффициенте усиления, так и при любом воздействии гаммы дестабилизирующих факторов не превышает 300мкВ (табл. 2), что, как видно из сопоставления с параметрами ИУ на одном МОУ (табл. 1), позволяет повысить К_д. Учитывая, что уравнение для максимально допустимого напряжения дрейфа нуля для п-разрядного аналого-цифрового преобразователя, используемого в АЦ-интерфейсе, имеет вид

$$U_{ap} = \frac{E_0}{2^n}$$
, (10)

где E_0 – опорное напряжение. Тогда, если $E_0 = 2,5B$, то разработанный ИУ можно использовать в микроэлектронных схемах с 12-разрядным АЦП с предельной методической точностью.

V. ЗАКЛЮЧЕНИЕ

Интеграция предложенных в данной работе эффективных схемотехнических решений в структуре радиационно-стойких инструментальных усилителей позволила получить высокие качественные показатели этого устройства при воздействии в широких пределах всей гаммы дестабилизирующих факторов. Следует отметить, что такие инструментальные усилители могут бесперебойно работать и в более жестких условиях (500 крад $\leq D \leq 1$ Мрад), для чего необходимо дополнительно изменить режимы работы ряда активных элементов, что приведет к увеличению потребляемого тока. Разработанные инструментальные усилители по своим метрологическим свойствам не уступают современным нерадиационно-стойким аналогам (например, AD8426, Analog Devices), за исключением величины напряжения дрейфа нуля.

ЛИТЕРАТУРА

- [1] Дворников О.В., Чеховский В.А. Аналоговый биполярно-полевой БМК с расширенными функциональными возможностями // Chip News. 1999. №2. С. 21-23.
- [2] Каталог разработок Российско-Белорусского центра аналоговой микросхемотехники / Прокопенко Н.Н., Старченко Е.И., Крутчинский С.Г., Титов А.Е. и др.– Шахты: Изд-во ГОУ ВПО «ЮРГУЭС», 2010. 479 с.
- [3] Paul L. Bugyik Patent No. : US 2010/0259323 A1. Variable gain instrumentation amplifier. Date of Patent : Oct. 14, 2010.
- [4] Титов А.Е. Двухканальные прецизионные инструментальные усилители для радиационно-стойких систем на кристалле // Изв. ЮФУ. Технические науки. Таганрог: Изд-во ТТИ ЮФУ, 2010. С. 64-70.
- [5] Крутчинский С.Г., Титов А.Е. Структурный синтез инструментальных усилителей на базе МОУ // Изв. ЮФУ. Технические науки. Таганрог: Изд-во ТТИ ЮФУ, 2009. С. 72-76.
- [6] Дворников О.В., Гришков В.Н. Комплексный подход к проектированию радиационно-стойких аналоговых микросхем. Ч 1. Учет влияния проникающей радиации в "Spice-подобных" программах // Сборник тр. IV Всероссийской научно-технической конференции «Проблемы разработки перспективных микро- и наноэлектронных систем». М: ИППМ РАН, 2010. С. 301-306.