Масштабируемая макромодель диода с повышенной точностью моделирования

А.С. Мокеев, А.Н. Мансуров, А.П. Ятманов

ФГУП «ФНПЦ НИИИС им. Ю.Е. Седакова», <u>aYatmanov@niiis.nnov.ru</u>

В статье приводится Аннотация описяние стандартной SPICE-модели диода на основе p-n перехода **DIODE.** Определены основные характеристики модели, выявлен ряд недостатков. Разработана макромодель «DIODE-SCALE», масштабируемая по топологическому параметру ширины базы диода и облалаюшая повышенной точностью. Провелена экстракция SPICE-параметров макромодели «DIODE-SCALE».

Ключевые слова — SPICE-модель, диод, макромодель, масштабирование, экстракция параметров.

I. Введение

К микросхемам, входящим в состав электронной аппаратуры специального назначения, предъявляются требования по стойкости к воздействию внешних факторов, в том числе к воздействию статического электричества.

Для достижения этих требований в блоках применяются ввода/вывода микросхем схемы. обеспечивающие толерантность к повышенному уровню входных напряжений и схемы ESD-защиты (ESD - ElectroStatic Discharge - электростатический разряд), основным элементом которых является диод на основе р-п перехода. В настоящее время проектирование осуществляется микросхем с САПР помощью (систем автоматизированного проектирования), таких как Cadence, ADS, в которых используются программы схемотехнического моделирования. Ha этапе моделирования электрической схемы существует острая необходимость в точных компактных SPICE-моделях диодов, масштабируемых по топологическим параметрам BO всем диапазоне значений, предусмотренных правилами проектирования для конкретного технологического процесса.

Стандартная компактная SPICE-модель (DIODE) диода, реализованного по КМОП КНИ технологии с проектными нормами 0.35 мкм (КНИ – кремний на изоляторе), обладает рядом существенных недостатков:

 неприемлемо низкая точность моделирования вольт-амперной характеристики (BAX) устройства (рис. 1, 2);

– модель не масштабируема по параметру ширины базы диода (*hwell*) (рис. 3) [1];

– модель не учитывает эффект модуляции сопротивления базы [2], эффект рекомбинации в области пространственного заряда (ОПЗ) при малых прямых напряжениях [3], процессы прямого и обратного восстановления [4].

В связи с этим актуальна разработка новой высокоточной SPICE-модели диода, в которой отсутствуют вышеописанные недостатки.

II. СТАНДАРТНАЯ МОДЕЛЬ DIODE

А. Описание модели DIODE

DIODE – стандартная SPICE-модель кремниевого диода на основе p-n перехода. Данная модель (программой поддерживается симулятором моделирования) Spectre фирмы Cadence [5], и включает в себя две модели: level-1 и level-2, выбор которыми осуществляется с помощью между параметра level. Модель level-1 описывает прямую и обратную ВАХ, пробой, паразитное сопротивление, барьерную и диффузионную емкости, емкость перекрытия и шумы. Модель level-2 используется для моделирования туннельного тока по Фаулеру-Нордгейму в очень тонких слоях диэлектриков, таких как диоксид кремния [1].

Модель DIODE является масштабируемой по таким параметрам устройства (Instance Parameters) как *l*, *w*, *m* – длина, ширина p-n перехода и коэффициент мультипликации, соответственно. В стандартной модели нет параметра ширины базы, который является критичным при высоком уровне инжекции неосновных носителей в диодах с узкой базой [2].

В. Экстракция параметров компактной модели «DIODE»

В данной работе проведена экстракция SPICEпараметров стандартной модели диода, реализованного по КМОП КНИ технологии с 0.35 проектными нормами мкм. Экстракция проводилась с помощью САПР Agilent IC-CAP 2010.08 [6] с внешне подключенным симулятором Spectre фирмы Cadence на рабочих станциях с операционной системой CentOS. Исходными данными для процесса экстракции являлись информация о техпроцессе и результаты приборно-технологического моделирования (ПТМ) диода с размерами W/L = 8мкм/0.175мкм. ПТМ проводилось с использованием САПР ТСАД фирмы Synopsys [7]. На рис. 1, 2

представлены прямая и обратная ветви ВАХ диода соответственно. Сплошной линией обозначены результаты моделирования на основе полученных SPICE-параметров, линией маркеров – результаты ПТМ.

Рис. 1. Прямая ветвь ВАХ диода

Рис. 2. Обратная ветвь ВАХ диода

Максимальное значение погрешности моделирования (Д_є) ВАХ диода составило порядка 90%. Среднеквадратическое значение Δ_{ϵ} для прямой и обратной ветви ВАХ составило около 40% и 90% соответственно. неудовлетворительные Такие результаты связаны с тем, что стандартная модель DIODE не учитывает эффект рекомбинации в ОПЗ при малых прямых напряжениях (участок 1 на рис. 1) и эффект модуляции сопротивления базы (участок 2 на рис. 1). Также стандартная модель не позволяет корректно описать область пробоя на обратной ветви ВАХ диода.

III. МАКРОМОДЕЛЬ ДИОДА «DIODE-SCALE»

Макромодель диода «DIODE-SCALE» разработана для полоскового p^+ -п диода, реализованного по КМОП КНИ технологии с проектными нормами 0.35 мкм.

Эскиз трехмерной структуры p⁺-n диода с основными топологическими параметрами представлен на рис. 3.

Для модификации стандартной SPICE-модели DIODE использованы два способа:

1) формирование макромодели, которая представляет собой эквивалентную схему, элементами которой являются стандартные компактные SPICE-модели;

2) изменение модели на уровне синтаксиса программы-симулятора путем добавления в net-лист модели дополнительных параметров и функциональных зависимостей.

Принципиальная электрическая схема макромодели диода «DIODE-SCALE» представлена на рис. 4.

Рис. 3. Эскиз трехмерной структуры р⁺-п диода

Рис. 4. Принципиальная электрическая схема макромодели диода «DIODE-SCALE»

Построение электрической схемы макромодели основано на методике, предложенной компанией Agilent Technologies [8], с рядом дополнений. Эффект рекомбинации в ОПЗ эмиттерного перехода при малых прямых напряжениях описывается с помощью стандартного диода *dl* (модель *dlow*), включенного параллельно основному *dio* (модель *dmain*), как показано на рис. 4. Эффект модуляции сопротивления базы при больших прямых напряжениях (высоком уровне инжекции неосновных носителей) описывается с помощью диода ds (модель dsat). Для корректного моделирования обратной ветви ВАХ диода (в частности, области пробоя) в схему макромодели вводятся дополнительные элементы: стандартный диод dr (модель drev) и резистор rsrev. Для описания частотных свойств диода использованы пассивные компоненты: lsa, ca0, ra0 – для цепи анода, lsc, cc0, rc0 – для цепи катода.

Алгоритм параметризации макромодели диода:

1) Выбирается стандартная SPICE-модель элемента СБИС, поддерживаемая программой-симулятором (DIODE).

2) Формируется макромодель.

3) В net-лист макромодели в качестве дополнительного параметра устройства вводятся пользовательские параметры ширины базы (*hwell*) и глубины залегания p^+ -п перехода (*xj*).

 Проводятся исследования электрофизических характеристик (ЭФХ) тестовых структур.

5) Проводится анализ полученных ЭФХ, определяется зависимость отдельных параметров макромодели от параметра *hwell*.

6) Выбирается аппроксимирующая функция для данной зависимости.

7) В net-листе макромодели необходимый параметр выражается через аппроксимирующую функцию, а ее коэффициенты вводятся в качестве дополнительных параметров масштабирования.

IV. ЭКСТРАКЦИЯ SPICE-ПАРАМЕТРОВ МАКРОМОДЕЛИ «DIODE-SCALE»

А. Исходные данные

Параметры технологического процесса:

— глубина залегания p^+ -п перехода (*xj*) = 175 нм;

- концентрация легирующей примеси p^+ -области $(N_a) = 1.7 \times 10^{20} \text{ см}^{-3}$;

– концентрация легирующей примеси n-области (N_d) = 7.0×10^{17} см⁻³.

Топологические параметры устройства:

- ширина p^+ -п перехода (w) = 1 мкм;
- ширина базы диода (*hwell*) = от 0.4 мкм до 1 мкм;
- площадь p⁺-п перехода (area) задается выражением

$$area = w * xj.$$

ЭФХ полосковых p⁺-n диодов, необходимые для экстракции SPICE-параметров, были получены в результате ПТМ в САПР ТСАД элементов КМОП КНИ СБИС с проектными нормами 0.35 мкм. На рис. 5 представлены структуры диодов с различной шириной базы (hwell). В. Последовательность экстракции SPICEпараметров макромодели «DIODE-SCALE»

Последовательность экстракции DC SPICEпараметров описана в табл. 1. Прямую ветвь ВАХ диода можно разбить на 4 участка (рис. 6):

1) участок малых токов (не принимается во внимание, т.к. определяется разрешающей способностью измерительного оборудования);

 участок с преобладанием рекомбинации в ОПЗ эмиттерного перехода;

3) участок с преобладанием процесса инжекции;

 участок, связанный с модуляцией сопротивления базы при высоком уровне инжекции;

оазы при высоком уровне и

Рис. 5. Структуры р⁺-п диодов с различной шириной базы (*hwell*)

Экстракция SPICE-параметров макромодели «DIODE-SCALE» проводилась с помощью САПР Agilent IC-CAP 2010.08 с внешне подключенным симулятором Spectre. DC, емкостные и температурные параметры макромодели «DIODE-SCALE» извлекаются с помощью оптимизационных алгоритмов САПР IC-CAP и программ на языке PEL (Parameter Extraction Language). Дополнительные параметры масштабирования извлекаются путем аппроксимации зависимостей модельных параметров от ширины базы диода (*hwell*).

Рис. 6. Участки прямой ветви ВАХ диода (полулогарифмический масштаб)

Таблица 1

Последовательность экстракции SPICE-параметров макромодели «DIODE-SCALE»

ЭФХ	Экстрагируемые SPICE-					
$\mathcal{I}_{\Phi X}$	параметры					
DC-параметры						
прямая ветвь ВАХ, участок 3	dmain.js, dmain.n					
прямая ветвь ВАХ, участок 2	dlow.js, dlow.n, dlow.gleak					
прямая ветвь ВАХ, участок 4, 5	$dsat.n^{1}$, $dsat.rs^{1}$, $dsat.js^{1}$					
обратная ветвь ВАХ	drev.js, drev.n, drev.rs, drev.bv, drev.ibv, dmain.gleak ¹⁾					
Емкостные параметры						
ВФХ	dmain.vj, dmain.fc,					
	dmain.mj, dmain.m					
ВФХ	dmain.cjo ¹⁾					
Температурные параметры						
прямая ветвь ВАХ	dmain.xti, dmain.eg, dsat.xti, dsat.eg					
прямая ветвь ВАХ	dsat.trs					
обратная ветвь ВАХ	drev.xti, dlow.tgs					
ВФХ	dmain.tlevc, dmain.cta, dmain.pta					
S-параметры						
S_{xx} (freq), S_{xy} (freq)	lsa.l, ca0.c, ra0.r, lsc.l, cc0.c, rc0.r					
$S_{xx}(freq), S_{xy}(freq)$	dmain.tt					
	ЭФХ <i>DC-пар</i> прямая ветвь ВАХ, участок 3 прямая ветвь ВАХ, участок 2 прямая ветвь ВАХ, участок 4, 5 обратная ветвь ВАХ <i>Eмкостны</i> ВФХ ВФХ ВФХ Прямая ветвь ВАХ прямая ветвь ВАХ обратная ветвь ВАХ обратная ветвь ВАХ <i>Б</i> рах <i>Б</i> рах					

¹⁾ Данный параметр извлекается (задается) для каждого значения ширины базы диода (*hwell*).

Прямая ветвь ВАХ диода при малых напряжениях описывается уравнением вида:

$$i_D = I_S * e^{\frac{v_D}{N * v t}}, \qquad (1)$$

где I_S – ток насыщения, N – фактор неидеальности, vt – тепловой потенциал.

Прологарифмируем обе части уравнения (1):

$$\lg i_D = \lg I_S + \left(\frac{1}{2.3*N*\nu t}\right) * \nu_D$$

Полученное уравнение имеет линейный вид:

$$y = b + m * x, \tag{2}$$

где
$$y = \lg i_D, b = \lg I_S, m = \frac{1}{2.3*N*vt}, x = v_D$$

Участок 3 прямой ветви ВАХ описывается с помощью диода *dio* макромодели «DIODE-SCALE» (рис. 6). Таким образом, для определения параметров *dmain.js*, *dmain.n* модели диода *dio* необходимо:

1) провести линеаризацию прямой ветви ВАХ диода (логарифмированием значений тока анода *ia*);

2) аппроксимировать участок 3 ВАХ линейной функцией (рис. 7);

3) выразить параметры I_s , N через коэффициенты аппроксимирующей функции m и b;

4) присвоить экстрагируемым параметрам макромодели полученные значения: $dmain.js = \frac{IS}{max}$, dmain.n = N.

Рис. 7. Определение уравнения линеаризованного участка ВАХ методом касательной

Параметр макромодели диода *dsat.js* задается выражением: $dsat.js = \frac{A}{hwell}$.

В результате анализа ЭФХ диодов определены зависимости ряда параметров макромодели от ширины базы. Топологические размеры диодов: w = 1 мкм, *hwell* = $0.4 \div 1$ мкм, шаг 0.1 мкм.

Получены следующие аппроксимирующие уравнения, описывающие зависимость параметров макромодели диода от ширины базы:

$$dsat.n = B1 + B2 * hwell$$

dsat.rs = C1 + C2 * hwell,

dmain. gleak = D1 + D2 * hwell,

dmain.cjo = E1 + E2 * hwell.

Графики зависимостей и аппроксимирующих функций представлены на рис. 8-11.

Рис. 8. График зависимости параметра *dsat.n* от ширины базы *hwell*

Рис. 9. График зависимости параметра *dsat.rs* от ширины базы *hwell*

Рис. 10. График зависимости параметра *dmain.gleak* от ширины базы *hwell*

Рис. 11. График зависимости параметра *dmain.cjo* от ширины базы *hwell*

Экстракция температурных SPICE-параметров проводилась из ЭФХ диодов, полученных при температурах: минус 50, минус 20, 27, 85, 125°С.

Извлеченные SPICE-параметры масштабирования макромодели диода представлены в табл. 2.

Таблица 2

SPICE-параметры масштабирования макромодели «DIODE-SCALE»

Параметр	Α	B1	<i>B2</i>	C1
Значение	519.68	1.16	181750	1.27×10^{-12}
Параметр	C2	D1	D2	E1
Значение	4.96x10 ⁻⁶	-3.067	2.5×10^7	0.0036
Параметр	E2			
Значение	251.15			

На рис. 12-16 представлены ЭФХ п-карманных диодов с различными топологическими размерами, в том числе при различных температурах среды. Маркерами обозначены результаты ПТМ, сплошной линией – результаты моделирования с использованием экстрагированных SPICE-параметров.

Рис. 12. Прямые ветви ВАХ диодов с различными значениями ширины базы

Рис. 13. Прямые ветви ВАХ диодов с различными значениями ширины базы (полулогарифмический масштаб)

Рис. 14. Обратные ветви ВАХ диодов с различными значениями ширины базы (полулогарифмический масштаб)

Рис. 15. ВФХ диодов с различными значениями ширины базы

Рис. 16. Прямые ветви ВАХ диода при различных значениях температуры среды

Сравнение стандартной модели «DIODE» и разработанной «DIODE-SCALE» представлено в табл. 3.

Сравнение стандартной модели «DIODE» и	l
разработанной – «DIODE-SCALE»	

Параметр	DI	DIODE- SCALE	
Среднеквадратиче-	Прямая ВАХ	Обратная ВАХ	Все ЭФХ
ское значение Δ_{ε}	40%	90%	$\leq 10\%$
Масштабируемость			+
по ширине базы			
Эффект модуляции	-		+
сопротивления базы			
Эффект	-		+
рекомбинации в ОПЗ			
Частотные свойства	-		
(S-параметры)			+

V. ЗАКЛЮЧЕНИЕ

В работе предложена масштабируемая макромодель диода с повышенной точностью «DIODE-SCALE». Разработаны моделирования алгоритмы параметризации и экстракции ее SPICEпараметров. Данная модель диода по техническим характеристикам превосходит стандартную модель «DIODE» и найдет широкое применение при проектировании микросхем, входящих в состав электронной аппаратуры специального назначения.

Литература

- Virtuoso Spectre Circuit Simulator Device Models and Circuit Components / Cadence Design Systems, Inc. - 555 River Oaks Parkway. San Jose, CA 95134, USA. 2004. 1274 p.
- [2] Dieter K. Schroder. Semiconductor material and device characterization. John Wiley & Sons, Inc. - 111 River Street, Hoboken, New Jersey. 2006. 779 p.
- [3] С.В. Булярский, Н.С. Грушко, А.И. Сомов, А.В. Лакалин. Рекомбинация в области пространственного заряда и ее влияние на коэффициент передачи биполярного транзистора // Физика и техника полупроводников. 1997. Т. 31. № 9. С. 1146-1150.
- [4] Maxim A., Maxim Gh. A novel power PIN diode behavioral SPICE macromodel including the forward and reverse recoveries and the self-heating process // Proceedings of the IEEE APEC'98 Conference. 2000. V. 2. P. 1088-1094.
- [5] Virtuoso Spectre Circuit Simulator User Guide / Cadence Design Systems, Inc. - 555 River Oaks Parkway. San Jose, CA 95134, USA. 2004. 332 p.
- [6] IC-CAP 2011.04. Introduction and Basics / Agilent Technologies, Inc. 2011. 192 p.
- [7] Sentaurus Device User Guide / Synopsys, Inc. 2007. 993 p.
- [8] IC-CAP Learning Week / Agilent Technologies. 2008. 650 p.