Системный подход к проектированию интегральных приемопередатчиков считывателей для систем РЧИ УВЧ диапазона

Н.А. Усачев^{1,3}, В.В. Елесин^{1,3}, Г.Н. Назарова^{1,3}, Г.В. Чуков^{1,3}, В.А. Телец¹, К.М. Амбуркин^{1,3}, Д.И. Сотсков^{1,3}, В.А. Дмитриев², Н.А. Шелепин²

¹Национальный исследовательский ядерный университет «МИФИ»

²ОАО «НИИМЭ и Микрон», г. Москва

³ОАО «ЭНПО СПЭЛС», г. Москва, nausach@spels.ru

Аннотация — Представлен системный подход к проектированию приемо-передающих узлов аппаратуры РЧИ, связи, навигации и радиолокации. Исходя из радиотехнических характеристик, регламентированных стандартом ISO 18000-6, выбрана архитектура, определены параметры и проведено проектирование функциональных блоков интегрального приемопередающего модуля считывателя для систем РЧИ УВЧ-Приемопередатчик лиапазона. с прямым преобразованием включает УВЧ приемный И передающий тракты, синтезатор частот; изготовлен по SiGe БиКМОП технологии 0,42/0,25 мкм и интегрирован в LTCС-модуль.

Ключевые слова — радиочастотная идентификация, считыватель, метка, приемопередатчик, сложнофункциональный блок, «система-в-корпусе», УВЧдиапазон, большая интегральная схема.

I. Введение

Системы радиочастотной идентификации (РЧИ) УВЧ-диапазона стандарта ISO 18000-6 находят широкое применение в сетях поставки товаров, розничной торговли, производстве, энергетике, здравоохранении и др. [1]. Типовая система РЧИ включает: считыватель, управляющий персональный компьютер и метки.

Ядром современного считывателя является интегральный приемопередающий модуль (ИППМ), сочетающий ультравысокочастотный (УВЧ) тракт приемника и передатчика, низкочастотный (НЧ) тракт фильтрации и усиления, набор аналого-цифровых и цифро-аналоговых преобразователей (АЦП и ЦАП), а также, в ряде случаев, схему цифровой обработки сигналов и управления [2], [3].

Базовый набор сложно-функциональных блоков (СФБ) УВЧ-тракта ИППМ включает малошумящий усилитель (МШУ) и выходной усилитель мощности (УМ), предназначенные для повышения чувствительности приемника и увеличения уровня мощности выходного сигнала в линии связи «считыватель-метка», соответственно; квадратурные модулятор (КМ) и демодулятор (КД); синтезатор частот (СЧ).

В базовый набор СФБ НЧ-тракта входят видеоусилители (ВУ) и активные полосовые фильтры (ПФ) с регулируемой полосой пропускания для подавления побочных высокочастотных сигналов и помех от схем аналого-цифрового преобразования и цифровой обработки сигналов. Упрощенная структурная схема ИППМ РЧИ считывателя показана на рис. 1.

Рис. 1. Структурная схема ИППМ РЧИ считывателя

Цель работы – разработка и апробация системного подхода к проектированию приемопередатчика считывателя в интегральном исполнении с определением параметров сложно-функциональных блоков, исходя из заданных радиотехнических характеристик системы РЧИ: дальности считывания, скорости передачи данных, скорости считывания меток, энергопотребления и др.

II. АНАЛИЗ РАДИОЧАСТОТНЫХ ПАРАМЕТРОВ И ОСНОВЫ СИСТЕМНОГО ПОДХОДА К ПРОЕКТИРОВАНИЮ ИППМ

А. Дальность считывания

В большинстве систем РЧИ УВЧ-диапазона применяются пассивные метки, получающие энергию из сигнала несущей частоты, передаваемого считывателем. В табл. 1 приведены типовые параметры элементов системы РЧИ УВЧ-диапазона, рассматриваемой в данной работе.

Таблица 1

Параметры системы РЧИ УВЧ-диапазона

Считыватель	Метка	Радиоканал	
Р _{TX} = 30 дБм G _{TX} = 3 дБи	Р _{ТАGMIN} = -15 дБм G _{TAG} = -5 дБи	$F = 865 \text{ M}\Gamma \text{II}$ M = 0.25 (ASK) $M [\square B] = 20 \log(0.25)$	

Минимальное значение мощности радиосигнала на входе метки P_{TAGMIN} , достаточное для ее активации, (чувствительность) составляет, как правило, не более -15 ...-20 дБм [2]. Уровни мощности сигнала на входе метки P_{TAG} и приемника считывателя P_{RX} определяются из уравнений (1), (2) [3], [4]:

$$P_{TAG}[\Box \mathsf{E}\mathsf{M}] = P_{TX} + G_{TX} + G_{TAG} - LOSS, \qquad (1)$$

$$P_{RX}[\mu \text{E}_{M}] = P_{TX} + 2G_{TX} + 2G_{TAG} - 2LOSS + M, \qquad (2)$$

$$LOSS[\Box B] = 20\log(\frac{4\pi L}{\lambda}),$$

где P_{TX} — мощность на выходе передатчика считывателя в дБм; G_{TX} и G_{TAG} — коэффициенты усиления антенн считывателя и метки в дБи; LOSS — потери, связанные с распространением в среде, в дБ; M — коэффициент модуляции сигнала обратного рассеяния, поступающего от метки, в дБ; L — расстояние между меткой и считывателем в метрах (дальность считывания); λ — длина волны несущего колебания в метрах.

На рис. 2 представлены расчетные зависимости P_{TAG} и P_{RX} от расстояния L для параметров из табл. 1.

Рис. 2. Зависимость мощности сигнала на входе метки РТАС и приемника считывателя PRX от расстояния между меткой и считывателем L

Из представленных на рис. 2 зависимостей следует, что для метки с чувствительностью P_{TAGMIN} равной -15 дБм дальность считывания *L* составляет 4 м, при этом для детектирования отраженного от метки сигнала значение чувствительности приемника ИППМ P_S составляет -73 дБм. Увеличение дальности считывания достигается повышением чувствительности метки (посредством использования полуактивных меток), либо увеличением выходной мощности P_{TX} , что, в свою очередь, приводит к блокированию приемного канала и росту общего энергопотребления считывателя.

В. Коэффициент шума приемника

Согласно требованиям стандарта [1], считыватель должен поддерживать работу в двух режимах: одновременного приема и передачи (Talk) и сканирования (приема) полосы частот перед передачей (LBT, от англ. «listen-before-talk») при выключенном передатчике.

Основным типом модуляции в прямом и обратном каналах связи РЧИ является амплитудная манипуляция (ASK). Стабильный прием сообщений в системе РЧИ УВЧ-диапазона обеспечивается при значении битовой ошибки (BER) не более 10⁻⁵, что соответствует значению сигнал/шум (SNR) 12 дБ.

Коэффициент шума (*NF_{RX}*) приемника ИППМ определяется с использованием выражения (3):

$$NF_{RX}[AB] = P_{S} + 174 - 10\log(BW_{N}) - SNR,$$
 (3)

где P_S – чувствительность приемника считывателя в дБм, BW_N – полоса пропускания канала в Гц.

<u>В режиме Talk</u> при чувствительности $P_S = -73$ дБм и полосе пропускания 1,28 МГц (соответствует максимальной скорости передачи данных 640 кбит/с) значение NF_{RX} не должно превышать 28 дБ.

<u>В режиме LBT</u> при сканировании каналов с полосой пропускания BW_N 200 кГц чувствительность приемника P_S должна составлять -100 дБм и менее, при этом, согласно выражению (3), значение NF_{RX} составляет 9 дБ.

С. Линейность приемного тракта

Распространенная схема расположения группы считывателей системы РЧИ приведена на рис. 3.

Рис. 3. Типовая схема расположения группы считывателей

При условии, что считыватели А и В работают в режиме Talk, а считыватель С – в режиме LBT, верхняя граница линейности по входу приемного тракта P_{-1dB} считывателя С определяется согласно выражению (4):

$$P_{-1dB}[\Box BM] = P_{TX_A} + G_{TX_A} + G_{RX_C} - LOSS, \qquad (4)$$
$$LOSS = 20\log(\frac{4\pi(2L)}{\lambda}),$$

где P_{TX_A} – мощность сигнала передатчика считывателя А в дБм, G_{TX_A} и G_{RX_C} – коэффициенты усиления передающей и приемной антенн считывателей А и С в дБи.

Значение $P_{.lob}$ для режима LBT, определенное с использованием выражения (4) для параметров, приведенных в табл. 1, и L = 4 м должно составлять не менее -13,3 дБм.

На рис. 4 показаны моно- и бистатическая конфигурации антенн считывателя. В первом случае используется одна антенна для приема и передачи, соединяемая с приемным и передающим трактами ИППМ через направленный ответвитель (НО) или циркулятор. При бистатической схеме применяются две антенны.

Рис. 4. Схемы включения считывателя при моностатической (а) и бистатической (б) конфигурациях

Моностатическую схему характеризует малое значение развязки между приемником и передатчиком считывателя, определяемое параметрами HO, не превышающее 20...25 дБ. Моностатическая конфигурация широко применяется в автономных считывателях с интегрированной антенной. Бистатическая конфигурация обеспечивает развязку 30...40 дБ, определяемую коэффициентом связи между антеннами.

<u>В режиме Talk</u> значение $P_{.1dB}$ определяется эффектом перегрузки (блокирования) входа приемника частью сигнала передатчика P_{TX} , поступающего на вход. $P_{.1dB}$ приемника ИППМ для системы РЧИ с параметрами из табл. 1 в случае использования моно- и бистатической схем составляют не менее 5 и 0 дБм, соответственно.

D. Уровень фазового шума

<u>В режиме Talk</u> задача детектирования слабого, отраженного от метки полезного сигнала (менее -60 дБм), затрудняется наличием на входе приемника немодулированного сигнала несущей частоты передатчика F_{LO} с мощностью не менее 0 дБм, а также сигналов соседних считывателей F_{AC} (см. рис. 5). Это

обстоятельство определяет требования к уровню фазовых шумов сигнала несущей частоты.

Рис. 5. Вид спектра на радиочастотном входе (а) и низкочастотном выходе (б) квадратурного смесителя приемника ИППМ

Значение уровня фазового шума *PN* сигнала несущей частоты, при котором является возможным выделение и последующая обработка полезного НЧ-сигнала, определяется по выражению (5) [5]:

$$PN = P_{S} + ACRR - SNR - 10\log(F_{C}), \qquad (5)$$

где F_C – частота отстройки от несущей в Гц, ACRR – подавление помех соседнего канала в дБ.

Таким образом, для заданных выше параметров системы РЧИ: чувствительность в режиме Talk составит -73 дБм, *SNR*=12 дБ и *ACRR*=40 дБ, уровень фазового шума, при котором не будет происходить блокирование НЧ информационного сигнала, не должен превышать -95 дБн/Гц при отстройке от несущей 100 кГц.

III. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ И ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

На основе представленного системного подхода определены состав СФБ и требования к параметрам приемника и передатчика считывателя. В ОАО «ЭНПО СПЭЛС» разработан и изготовлен интегральный УВЧ-тракта ИППМ LTCC-модуль РЧИ УВЧдиапазона, представляющий собой «систему-вкорпусе». Модуль включает кристаллы СФБ приемника, передатчика и гетеродина, изготовленные по кремний-германиевой БиКМОП технологии 0,42/0,25 мкм [6]-[8]. Внешний вид модуля показан на рис. 6.

Рис. 6. LTCC-модуль УВЧ-тракта ИППМ (габаритные размеры 20×20×3 мм³)

Ha рис. 7 представлены сравнительные зависимости коэффициента передачи приемника УВЧ тракта ИППМ в режиме Talk при частоте сигнала гетеродина 865 МГц, полученные в ходе экспериментальных исследований И схемотехнического моделирования.

Рис. 7. Зависимости коэффициента передачи приемника от мощности входного сигнала

На рис. 8 представлена экспериментальная зависимость уровня фазового шума сигнала гетеродина от частоты отстройки.

Рис. 8. Зависимость уровня фазового шума *PN* сигнала гетеродина от частоты отстройки

Параметры УВЧ-тракта ИППМ, полученные в ходе экспериментальных исследований, приведены в табл. 2. Они соответствуют результатам системного анализа, полученным при проектировании, и не уступают зарубежным аналогам [3].

Таблица 2

Параметры УВЧ-тракта ИППМ

Параметр	Системный анализ	Эксперимент	Аналог [3]
ΔF , МГц	860960	860960	835930
Технология	Ι	SiGe БиКМОП 0,42/0,25 мкм	КМОП 0,18 мкм
Корпус	-	LTCC, 44 вывода, 20×20×3 мм ³	LQFP64А, 10×10 мм ²
<i>Р_{-1dB}</i> , дБм	не менее 0 (Talk) не менее -13,3 (LBT)	+8 -23	-3 -
NF _{RX} , дБ	не более 28 (Talk) не более 9 (LBT)	27 9	35 -
<i>PN</i> , дБн/Гц @100кГц	не более -95	-95	-90

IV. ЗАКЛЮЧЕНИЕ

Представлен системный подход к проектированию интегральных приемопередатчиков УВЧ-диапазона, основанный на расчете основных параметров приемника, передатчика и гетеродина, исходя из радиотехнических характеристик системы рчи стандарта ISO 18000-6. Выбран состав СФБ УВЧ приемного, передающего и гетеродинного трактов, определена архитектура с прямым преобразованием, заданы параметры технического уровня, проведено проектирование УВЧ-тракта интегрального ИППМ считывателя с рабочим диапазоном частот 860...960 МГц. Конструктивно ИППМ выполнен в LTCC-модуле в виде интегральной «системы-в-корпусе». В LTCCмодуле размещены также дискретные пассивные элементы согласования И фильтрации, симметрирующие трансформаторы.

Результаты экспериментальных исследований УВЧ-тракта ИППМ соответствуют результатам системного анализа, проведенного на этапе проектирования.

Благодарности

Авторы выражают благодарность Никифорову А.Ю. (OAO) «ЭНПО СПЭЛС»), Репину В.В., Мухину И.И. (OAO «НИИМА «Прогресс»), Будякову А.С. (ОАО «НПП «Пульсар»), Егорову Г.Н. (ФГУП «РНИИРС») за ценные замечания, рекомендации и искренний интерес, проявленный к данной работе.

ЛИТЕРАТУРА

- EPC radio frequency identity protocols C1G2 UHF RFID. Protocol for communications at 860-960 MHz // URL: http://www.gs1.org (дата обращения: 09.04.2014).
- [2] Design, verification and measurement techniques for UHF RFID tag IC / Xu K. et al. // 7th Int. Conf. on WiCOM. 2011. P. 1-5.
- [3] Several key Issues in single-chip UHF RFID reader design / Zhang R. et al. // ICMMT-2010. P. 1453-1456.
- [4] Dobkin D. The RF in RFID: UHF RFID in practice // Elseiver. 2008. 505 p.
- [5] System design considerations of highly-integrated UHF RFID reader transceiver RF front-end / Wang J. et al. // ICSIT-2008. P. 1560-1563.
- [6] Елесин В.В., Назарова Г.Н., Усачев Н.А. Проектирование пассивных элементов для монолитных кремнийгерманиевых СВЧ ИС, устойчивых к воздействию ионизирующих излучений // Микроэлектроника. 2010. Т. 39. № 2. С. 149-157.
- [7] Елесин В.В., Чуков Г.В., Громов Д.В., Репин В.В., Вавилов В.А. Исследование влияния ионизирующих излучений на характеристики кремний-германиевых интегральных схем СВЧ диапазона // Микроэлектроника. 2010. Т. 39. № 2. С. 136-148.
- [8] Balun integral circuits design / Mukhin I.I. et al. // 22nd Internat. Crimean Conf. Microwave and Telecom. Tech., Conference Proceedings - 2012. P. 95-96.