Исследование ячейки КМОП-совместимого ЭСППЗУ

И.В. Ермаков

ОАО «Научно-исследовательский институт молекулярной электроники», iermakov@mikron.ru

Национальный исследовательский университет «МИЭТ»

характеристики Аннотация Представлены ячейки ЭСППЗУ с толщиной экспериментальной туннельного окисла 7 нм, изготовленной в стандартном КМОП-процессе с проектными нормами 0,18 мкм. Исследованы зависимости порогового напряжения времени напряжения ячейки памяти ОТ и записи/стирания, от количества циклов перезаписи и количества суток отжига при температурах 100 и 150°С. Дополнительно исследована ячейка памяти с толщиной туннельного окисла 3,2 нм. Для исследуемых ячеек памяти определены значения энергии активации и рассчитано время хранения информации при разных температурах.

Ключевые слова — КМОП, ЭСППЗУ, флэш-память, плавающий затвор, ячейка памяти.

I. Введение

электрически перепрограм-Энергонезависимая мируемая память (ЭСППЗУ) широко востребована, поскольку она обладает двумя важными достоинствами. Во-первых, позволяет хранить информацию в течение длительного периода времени при отключенном источнике питания. Во-вторых, имеет возможность многократного перепрограммирования электрическим способом. Изделие, содержащее встроенное ЭСППЗУ, позволяет производителю или потребителю конфигурировать его для различных приложений.

Однако многие технологии с опцией ЭСППЗУ используют два слоя поликристаллического кремния (поликремния), тогда как большинство традиционных КМОП-процессов содержат только один слой поликремния. Как следствие, для того, чтобы встроить ЭСППЗУ в технологию, требуется ее изменение и добавление нескольких технологических операций. Дополнительные операции технологические увеличивают время производственного никла. стоимость производства, вероятность возникновения дефектов и, в конечном счете, снижают выход годных.

Ячейка, выполненная в специализированной технологии с опцией ЭСППЗУ, в которой используется несколько поликремниевых слоев и ряд дополнительных технологических операций, несомненно имеет в несколько раз меньшую площадь и хороший потенциал для масштабирования по сравнению с ячейкой ЭСППЗУ в стандартном КМОПпроцессе. Специализированная технология оправдана в случае больших объемов памяти. Однако существуют области применения ЭСППЗУ, в которых не требуется большой объем памяти. Например, хранение различной служебной информации, кодов доступа к микросхеме, различных ключей, подгоночных коэффициентов или подстроечных кодов для высокоточных аналоговых блоков, таких как аналогоцифровые и цифро-аналоговые преобразователи, прецизионные источники опорного напряжения, системы фазовой автоподстройки частоты [1]-[4] и др.

Несмотря на все достоинства, серьезным вопросом ЭСППЗУ. Надежность является належность способность ячейки сохранять накопленный на плавающем затворе заряд в течение длительного периода и в то же время это возможность многократного программирования. Основными характеристиками, которые определяют надежность ячейки памяти, являются окно памяти (memory window) - разница пороговых напряжений ячейки в записанном и стертом состояниях, выносливость количество циклов перезаписи (endurance) и время хранения информации (retention time).

II. Конструкция и принцип работы ячейки

А. Технологический базис

Компания ОАО «НИИМЭ и Микрон» обладает стандартной КМОП-технологией с проектными нормами 0,18 мкм и одним слоем поликремния. В данной технологии доступно два типа МОПтранзисторов. Первый тип – транзисторы ядра с толщиной подзатворного окисла 3,2 нм и напряжением питания 1,8 В, второй тип – транзисторы для ячеек ввода/вывода с толщиной подзатворного окисла 7 нм и напряжением питания 3,3 В.

В. Конструкция и принцип работы ячейки

Ячейка состоит из n-МОП-транзистора, МОПконденсаторов C_c и C_t (рис. 1). Толщина подзатворного окисла всех трех элементов 7 нм. Их затворы объединены и образуют плавающий затвор, n-карман конденсатора C_c функционирует как управляющий затвор СС ячейки. С_t – туннельный конденсатор, через который происходит накопление или удаление заряда. Операции программирования и стирания осуществляются при помощи механизма туннелирования Фаулера-Нордгейма (ФН) [5].

При программировании на CG подается высокое напряжение U_{CG} равное 7-10 B, обеспечивающее туннельный ток в C_t, а на EP подается 0 B. Поскольку C_c >> C_t, то большая часть напряжения CG передается на плавающий затвор FG, напряжение на котором обозначено как U_{FG} (1). Между обкладками туннельного конденсатора C_t возникает разность потенциалов 7-10 B и электрическое поле порядка 10 MB/см, что приводит к возникновению туннельного тока электронов из п-кармана на плавающий затвор. Накопленный отрицательный заряд на плавающем затворе FG увеличивает пороговое напряжение п-МОП-транзистора считывания:

$$U_{FG} \approx U_{CG} \cdot \frac{C_c}{C_c + C_t} . \tag{1}$$

При стирании на CG подается 0 В, а на EP подается высокое напряжение 7-10 В. На плавающий затвор FG передается 0 В. В этом случае электрическое поле в туннельном конденсаторе направлено в противоположную сторону, поэтому происходит удаление отрицательного заряда с плавающего затвора. Отсутствие отрицательного заряда на плавающем затворе FG уменьшает пороговое напряжение n-МОПтранзистора считывания.

Рис. 1. Топология ячейки памяти

При считывании на управляющий затвор CG подается напряжение, значение которого лежит между пороговым напряжением п-МОП-транзистора в запрограммированном и стертом состояниях, на ЕР и исток S подается 0 В, на сток D – напряжение питания. При считывании происходит сравнение тока п-МОП-транзистора с током опорной ячейки. Ток опорной ячейки больше тока запрограммированной ячейки и меньше тока стертой ячейки. При дифференциальном считывании всегда происходит сравнение тока запрограммированной ячейки.

III. ИСПОЛЬЗОВАНИЕ СРЕДСТВ ПРИБОРНО-ТЕХНОЛОГИЧЕСКОГО МОДЕЛИРОВАНИЯ

Исходные данные для приборно-технологического моделирования показаны в таблице 1.

Таблица 1

Исходные данные для приборно-технологического моделирования

Параметр структуры	Значение		
Толщина оксида Т _{ОХ}	6,95 нм		
Ширина структуры W	0,50 мкм		
Длина большой емкости L (HSCapa)	31,28 мкм		
Длина малой емкости L (LSCapa)	1,19 мкм		
Длина затвора n-канального	0,34 мкм		
транзистора L _G			

Профили распределения элементов ячейки памяти рассчитывались в программе технологического моделирования с использованием стандартного КМОП-маршрута с проектными нормами 0,18 мкм.

Моделирование ячейки памяти с плавающим затвором накладывает ограничение, при котором элементы, составляющие данную ячейку (два МОПконденсатора и п-МОП-транзистор), обязательно должны быть объединены в одну структуру. Для анализа была использована упрощенная двумерная (2D) структура ячейки памяти, показанная на рис. 2.

Рис. 2. Схематичное изображение разреза структуры ячейки памяти

Для использования 2D моделирования необходимо привести размеры элементов в соответствие с заданными площадями в эксперименте, для этого размеры по горизонтали для конденсаторов были выбраны исходя из ширины n-MOП-транзистора W= 0,5 мкм и заданных площадей конденсаторов.

Для правильного моделирования структуры с плавающим затвором в программе электрофизического моделирования необходимо определить емкости, которые будут формировать потенциал плавающего затвора. Влияние емкостей, составляющих ячейку памяти, на потенциал плавающего затвора достаточно хорошо описано в литературе и статьях на данную тему [6].

Для расчета ячейки памяти были выбраны следующие модели:

а) туннелирования через диэлектрик – модель Фаулера-Нордгейма (ФН);

б) подвижности носителей заряда: рассеяние на носителях, ионах примеси и фононах – модель PhuMob;

 в) рекомбинации-генерации: Шокли-Рида-Холла, модель межзонного туннелирования носителей заряда (Band-to-Band).

Для определения емкостей при помощи АСанализа была рассчитана двумерная структура ячейки памяти и определены емкости при высоком потенциале на плавающем затворе. Далее полученный набор емкостей подставлялся в командный файл программы электрофизического моделирования, и с использованием временного анализа была рассчитана записи/стирания. ячейка для одного цикла Варьировались время и напряжение записи/стирания. Распределение потенциалов и токов в структуре показано на рис. 3.

Рис. 3. Зависимость напряжений и токов ячейки памяти от времени записи/стирания при V_{nn}=8 В

Рис. 4. Зависимость порогового напряжения записанной ячейки от времени записи, сравнение экспериментальных данных с результатами моделирования при V_{pp}=9 В

Следует отметить, что емкости, используемые в программе электрофизического моделирования для расчета структуры ячейки памяти, являются подгоночными.

Из рис. 4 видно, что зависимость порогового напряжения от времени записи хорошо совпадает с экспериментальными результатами. При стирании токи утечки выше, чем значение тока, на котором измеряется пороговое напряжение, поэтому для получения порогового напряжения при стирании необходима подгонка параметров модели ФН.

IV. ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК РАЗРАБОТАННОЙ ЯЧЕЙКИ

А. Исследование зависимости $V_{th}(t_{pp}, V_{pp})$

На рис. 5 представлен график зависимости порогового напряжения ячейки V_{th} от времени t_{pp} и напряжения записи/стирания V_{pp} .

Время программирования/стирания tpp, с

Рис. 5. Зависимость порогового напряжения ячейки памяти от времени и напряжения записи/стирания

На основании полученных экспериментальных данных можно сделать вывод о том, что чем больше напряжение записи/стирания, тем меньше времени требуется для записи/стирания и наоборот. При одном и том же времени записи/стирания окно памяти шире большем напряжении записи/стирания. при C уменьшением напряжения записи/стирания существенно увеличивается время, необходимое для получения минимального заданного окна памяти (0,5-1,0 В). Окно памяти в зависимости от режима программирования может составлять от 1 до 6 В.

В. Исследование зависимости порогового напряжения ячейки памяти от количества циклов перезаписи

На рис. 6 представлен график зависимости порогового напряжения ячейки памяти V_{th} от количества циклов перезаписи. Были выбраны четыре режима с разными напряжениями и временами записи/стирания, в которых окно памяти составляет от 1 до 2,5 В.

Рис. 6. Зависимость порогового напряжения ячейки памяти от количества циклов перезаписи

экспериментальных Из полученных данных следует, что после 1000 циклов перезаписи наблюдается увеличение порогового напряжения, что может быть связано либо с захватом электронов на ловушки в окисле, либо с неполным удалением заряда с плавающего затвора во время операции стирания. Чем выше напряжение записи/стирания, тем сильнее увеличивается пороговое напряжение после 1000 циклов перезаписи, то есть больше деградация. В целом ячейка обладает хорошей износоустойчивостью, окно памяти сильно не сужается, а сдвигается вверх примерно на 1 В. Из графиков на рис. 5 и 6 следует, что оптимальное напряжение считывания равно 1 В.

С. Температурный отжиг

Для определения энергии активации и времени хранения информации ячейки памяти был проведен температурный отжиг ячеек, запрограммированных в разных режимах с разным количеством циклов перезаписи, при 100 и 150°С в течение сорока суток.

Рис. 7. Зависимость порогового напряжения ячейки от времени отжига при 150 °С для режима записи/стирания V_{pp} =9 B, t_{pp} =30 мс

Рис. 8. Зависимость порогового напряжения ячейки от времени отжига при 100 °С для режима записи/стирания V_{pp}=9 B, t_{pp}=30 мс

Анализ экспериментальных данных показывает, что уменьшение порогового напряжения записанной ячейки памяти со временем можно аппроксимировать линейной зависимостью, а изменением порогового напряжения стертой ячейки можно пренебречь во всех режимах записи/стирания и при всех значениях исследуемых температур. Для сравнения на рис. 7 и 8 представлены зависимости порогового напряжения ячейки для режима записи/стирания при напряжении 9 В, в течение 30 мс с разным количеством циклов перезаписи от времени отжига при температурах 150 и 100°С соответственно. Аналогичные зависимости получены для всех остальных режимов.

D. Определение энергии активации

Как показано в [7], энергия активации E_a может быть определена, зная уход порогового напряжения ячейки памяти хотя бы при двух значениях температур по формуле (2):

$$E_{a} = k \cdot \left(\ln(t_{1}) - \ln(t_{2}) \right) / \left(1/T_{1} - 1/T_{2} \right), \quad (2)$$

где k – константа Больцмана, t_1 – время, за которое пороговое напряжение ячейки уменьшится на 50% при температуре T_1 , t_2 – время, за которое пороговое напряжение ячейки уменьшится на 50% при температуре T_2 .

Е. Расчет времени хранения информации

В литературе [8], [9] показано, что коэффициент ускорения рассчитывается по формуле (3):

$$AF = \exp\left[\left(E_a / k\right) \cdot \left(1 / T_{use} - 1 / T_{stress}\right)\right], \quad (3)$$

где E_a – энергия активации, k – постоянная Больцмана, T_{use} – рабочая температура ячейки, T_{stress} – температура отжига. С другой стороны, коэффициент ускорения может быть рассчитан по формуле (4):

$$AF = t_{use} / t_{stress} , \qquad (4)$$

где t_{use} – время хранения информации при температуре T_{use} , t_{stress} – время отжига при температуре T_{stress} . Из (4),

зная AF, можно получить время хранения информации при определенной температуре. После обработки экспериментальных данных была сформирована таблица 2.

Таблица 2

Энергия активации E_a и время хранения информации ячейки памяти при разных температурах и разных режимах записи/стирания

Режим	Кол-во	E _a ,	Е _а , Время хранения, лет,			ет,
	циклов эВ	эВ	25	50	100	150
7,5B 1c	1	0,28	59,5	25,9	6,8	2,5
	1000	0,33	107,4	39,6	8,0	2,3
	10000	0,40	230,1	68,6	9,9	2,3
	100000	0,30	90,2	40,4	7,3	2,2
8В 300мс	1	0,32	81,4	31,2	6,7	2,1
	1000	0,41	202,1	65,0	17,5	1,6
	10000	0,43	239	64,8	8,0	1,6
	100000	0,42	198,3	56,4	11,7	1,7
9В 30мс	1	0,35	80,9	28,3	5,3	1,5
	1000	0,25	27,0	12,7	3,8	1,5
	10000	0,40	89,8	27,2	4,0	1,0
	100000	0,38	89,9	21,5	3,8	1,0
10В 1мс	1	0,30	48,1	19,6	4,7	1,6
	1000	0,40	116,6	35,2	5,2	1,2
	10000	0,38	195,4	55,9	10,8	1,4
	100000	0,32	50,6	31,5	9,7	1,3

Значения энергии активации ячейки памяти в зависимости от режима записи/стирания лежат в диапазоне от 0,25 до 0,43 эВ. Минимальное время хранения информации при 150 °С – 1 год, при 100 °С – 3,8 лет, при 50 °С – 12,7 лет, при 25 °С – 27 лет. Полученные экспериментальные данные согласуются с результатами в [8].

V. ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ЯЧЕЙКИ ПАМЯТИ С ТОЛЩИНОЙ ТУННЕЛЬНОГО ОКИСЛА 3,2 НМ

Помимо ячейки с 7 нм туннельным окислом, была разработана и исследована ячейка с толщиной туннельного окисла 3,2 нм.

Рис. 9. Зависимость порогового напряжения ячейки с окислом 3,2 нм от времени отжига при 150 °С для двух режимов записи/стирания с одним циклом перезаписи

Более тонкий окисел в туннельном конденсаторе снизить напряжение записи/стирания. позволяет Типовое напряжение записи/стирания ячейки с 7 нм туннельным окислом составляет 8-10 В, тогда как для ячейки с 3,2 нм туннельным окислом оно равно 6-8 В. Несмотря на это, время хранение ячейки с более тонким окислом много меньше. На рис. 9 и 10 представлены зависимости порогового напряжения ячейки с толщиной туннельного окисла 3,2 нм для двух режимов записи/стирания с одним циклом перезаписи от времени отжига при температурах 150 и 100°С соответственно. Из графиков видно, что с увеличением времени отжига происходит значительное сужение окна памяти. В таблице 3 представлены результаты обработки экспериментальных данных: энергия активации и время хранения информации при разных температурах и разных режимах.

Время отжига при температуре 100°С, сутки

Рис. 10. Зависимость порогового напряжения ячейки с окислом 3,2 нм от времени отжига при 100 °С для двух режимов записи/стирания с одним циклом перезаписи

Время хранения ячейки памяти с толщиной туннельного окисла 3,2 нм менее года при температуре 25 °C.

Таблица 3

Энергия активации E_a и время хранения информации ячейки памяти с 3,2 нм туннельным окислом при разных температурах и разных режимах записи/стирания

Режим	Кол-во циклов	E _a , эВ	Время хранения, лет, при Т _{use} , °С			
			25	50	100	150
6,0В 100мс	1	0,07	0,8	0,7	0,5	0,4
7,5В 1мс	1	-0,03	0,3	0,2	0,3	0,3

VI. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ

Разработанная ячейка памяти с толщиной туннельного окисла 7 нм была применена при проектировании сложно-функционального (СФ) блока ЭСППЗУ небольшой емкости (108 бит). Топология

блока ЭСППЗУ представлена на рис. 11. Размер кристалла 230х300 мкм². СФ-блок был использован при разработке ИС синтезатора частот с дробным коэффициентом деления для настройки его выходной частоты. Топология синтезатора показана на рис. 12.

Рис. 11. Топология СФ-блока ЭСППЗУ емкостью 108 бит

Рис. 12. Топология ИС синтезатора частот с разработанным СФ-блоком ЭСППЗУ

VII. ЗАКЛЮЧЕНИЕ

Разработаны и изготовлены экспериментальные ячейки КМОП-совместимого ЭСППЗУ с толщинами туннельного окисла 3.2 И 7 нм. Проведены исследования ячеек. Получены зависимости порогового напряжения ячеек от времени И напряжения записи/стирания, от количества циклов перезаписи и количества суток отжига. Для исследуемых ячеек рассчитаны значения энергии активации и определено время хранения информации при разных температурах.

Исследования показали, что ячейка памяти с 7 нм туннельным окислом на базе стандартной КМОПтехнологии с проектными нормами 0,18 мкм по своим характеристикам и надежности не уступает ячейкам ЭСППЗУ, которые выполнены в специализированных двумя технологиях слоями поликремния. с Разработанная ячейка в зависимости от режима записи/стирания имеет окно памяти от 1 до 6 В, обладает хорошей износоустойчивостью до 10⁵ циклов перезаписи и надежно хранит накопленный заряд в течение не менее 20 лет при температуре 25 °C. Ячейка с 3,2 нм туннельным окислом хоть и позволяет снизить напряжение записи/стирания на 2 В, тем не менее является ненадежной, поскольку хранит накопленный заряд менее года при температуре 25 °С.

БЛАГОДАРНОСТИ

Автор выражает благодарность сотрудникам компании ОАО «НИИМЭ и Микрон» Михайлову А.А., Матвееву Н.Н. и Ильину А.Ф. за их помощь, оказанную при измерениях ячейки памяти, а также Ключникову А.С. за его помощь, оказанную при проведении приборного моделирования.

ЛИТЕРАТУРА

- Реализация ЭСППЗУ [1] Ермаков И.В. с одним поликремнием в контактной метке с однопроводным интерфейсом, выполненной по КМОП технологии СБИС уровня 0,18 мкм // Сборник научных трудов SWorld. Материалы международной научнопрактической конференции «Научные исследования и их практическое применение. Современное состояние и пути развития 2012». Одесса: КУПРИЕНКО, 2012. Т. 11. Вып. 3. С. 60-68.
- [2] Jin L.-Y., Jang J.-H., Yu Y.-N., Ha P.-B., Kim Y.-H. Design of 512-bit logic process-based single poly EEPROM IP // Journal of Central South University of Technology. Dec. 2011. Vol. 18. Issue 6. P. 2036-2044.
- [3] Hafkemeyer K. M., Schott A., Vega-Castillo P., Krautschneider W. H. Analog Circuit Calibration with Single Poly Non-Volatile Memories // NORCHIP. 2008. P. 254-257.
- [4] Raszka J., Advani M., Tiwari V., Varisco L., Hacobian N. D., Mittal A., Han M., Shirdel A., Shubat A. Embedded flash memory for security applications in a 0.13 μm CMOS logic process // Solid-State Circuits Conference. Feb. 2004.
- [5] Красников Г.Я. Конструктивно-технологические особенности субмикронных МОП-транзисторов. Изд. 2е, испр. М.: Техносфера, 2011. 800 с.
- [6] R. Micheloni et al., Inside Solid State Drives (SSDs) // Springer Series in Advanced Microelectronics 37, DOI 10.1007/978-94-007-5146-0 5, Springer ScienceCBusiness Media Dordrecht 2013.
- [7] Патент US №6813752. Method of determining charge loss activation energy of a memory array / Hsia et al. Опубл. 02.11.2004.
- [8] Niset M., Kuhn P. Typical data retention for nonvolatile memory // Freescale Semiconductor Engineering Bulletin. Rev 4. 4/2005.
- Failure mechanisms and moels for semiconductor devices // JEDEC Solid state technology association. JEP120G. 2011.