

MEGARAD

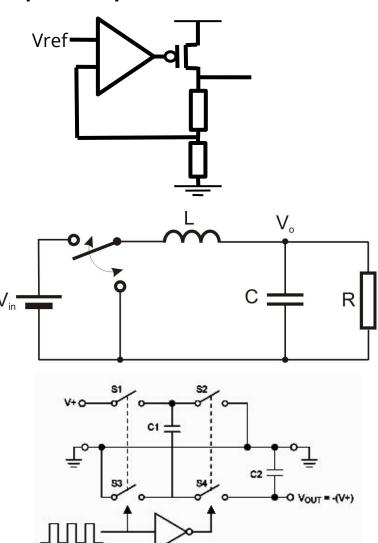
Интегральный преобразователь напряжения на переключаемых конденсаторах

В.Е. ШУНКОВ 1,2 , О.Н. КУСЬ 2 , В.Ю. ПРОКОПЬЕВ 1 , В.А. БУТУЗОВ 1,3 , Ю.И. БОЧАРОВ 3 , В.Е. ШУНКОВ 4

- 1 ООО «Мегарад», 2 ООО «ОКБ Пятое Поколение»,
- 3 НИЯУ «МИФИ», 4 ФГУ ФНЦ НИИСИ РАН

Основные типы POL DC/DC преобразователей

Линейный регулятор


- Коэффициент преобразования 1:1
- КПД ≈ Vout/Vin
- Не требует внешних компонентов
- Малые шумы

Индуктивный преобразователь

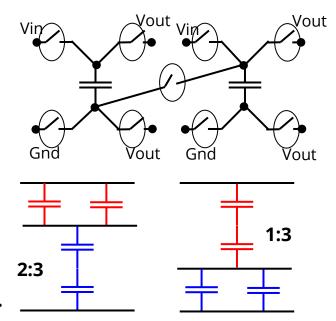
- Коэфф. преобр. плавно регулируется
- КПД до 90-95%
- Требуется внешняя индуктивность
- Большие шумы

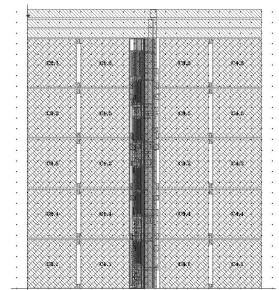
Емкостной преобразователь

- Коэфф. преобразования дробный
- КПД ≈ k*(Vout/Vin) ~ 60-90%
- Конденсаторы могут быть интегрированы
- Большие шумы

Емкостные преобразователи могут быть интегрированы в СнК и обеспечивают более высокий КПД, чем линейные регуляторы.

Емкостная переключаемая ячейка


Коэффициенты преобразования: 2:3, 1:2, 1:3. Ячейка содержит два МІМ-конденсатора и девять ключей.


Управление при помощи изменения частоты преобразования (PFM) - модуляция выходного сопротивления ячейки.

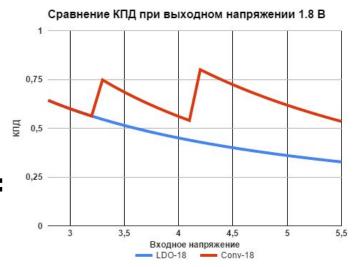
Микросхема преобрвазователя содержит 864 идентичные ячейки, разделенные на 8 блоков.

Удельная емкость доступных в выбранном техпроцессе МІМ-конденсаторов 6.6 фФ/мкм².

Типичная удельная емкость доступных МІМконденсаторов — 1-2 фФ/мкм² Возможна реализация на MOS-конденсаторах (~3 фФ/мкм² для транзисторов с питанием 5 В).

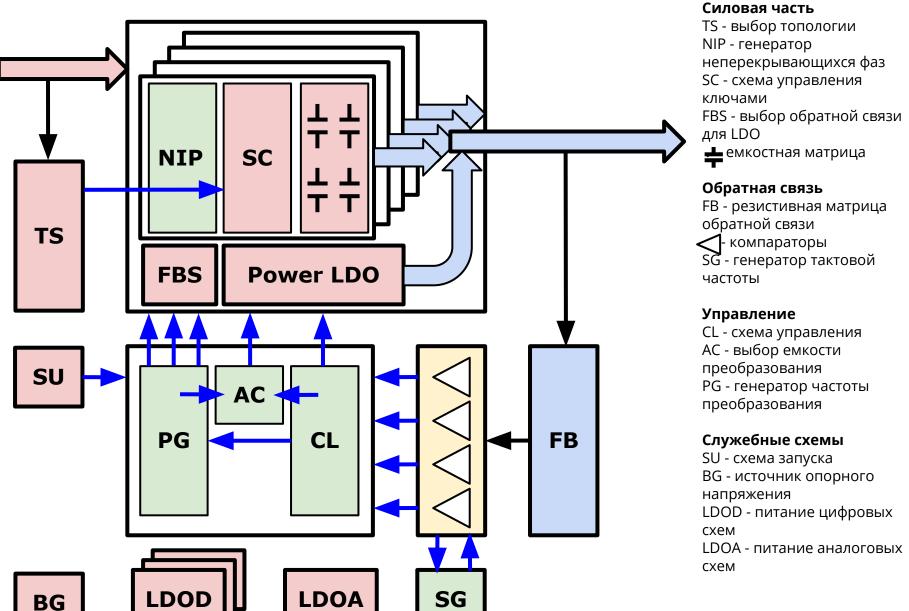
DC/DC преобразователь

Целевые параметры:

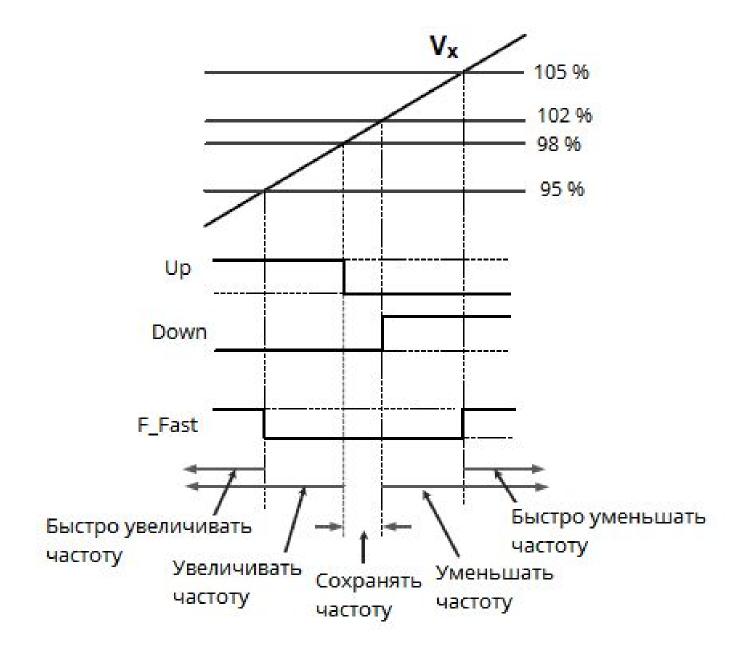

2.8~5.5 B 1.2~3.3 В, с шагом 100 мВ 300 мА

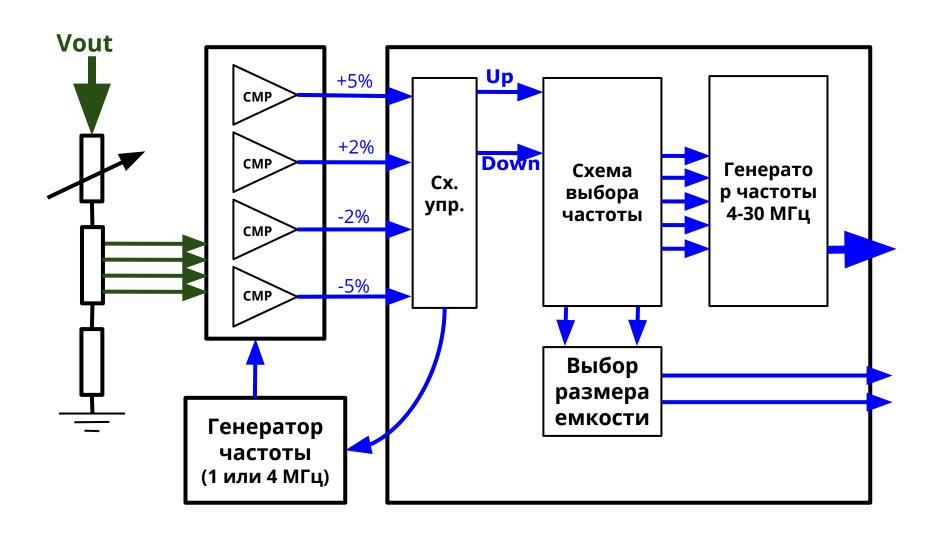
Полностью интегральная реализация:

- ниже выходной шум;
- меньше компонентов на плате

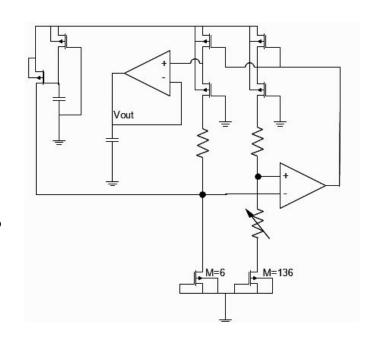

Основные достоинства:

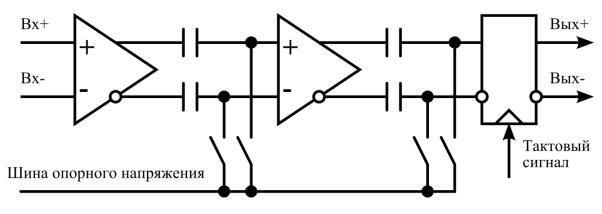
- КПД выше, чем у линейного регулятора, во всем диапазоне напряжений и выходных токов.
- Площадь на плате меньше, чем у индуктивного преобразователя
- Возможность интеграции в качестве встроенного регулятора СнК.




Принципиальная схема преобразователя

Логика работы схемы управления


Схема управления частотой преобразования



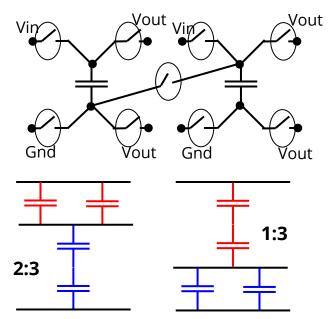
Схемные решения отдельных блоков

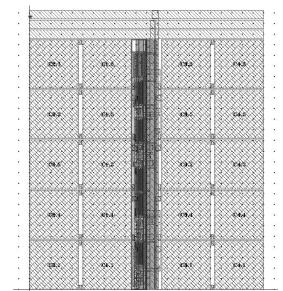
Источник опорного напряжения - ячейка Брокау с использованием DTMOS. При малых токах DTMOS имеют экспоненциальную BAX, что позволяет заменить ими диоды.

Подобное решение позволяет использовать малый рабочий ток и избавиться от радиационно-индуцированных утечек.

Компараторы выполнены по многокаскадной схеме с автокалибровкой смещения, позволяющей нивелировать разброс параметров и дозовые радиационные эффекты.

Емкостная переключаемая ячейка


Коэффициенты преобразования: 2:3, 1:2, 1:3. Ячейка содержит два МІМ-конденсатора и девять ключей.


Управление при помощи изменения частоты преобразования (PFM) - модуляция выходного сопротивления ячейки.

Микросхема преобрвазователя содержит 864 идентичные ячейки, разделенные на 8 блоков.

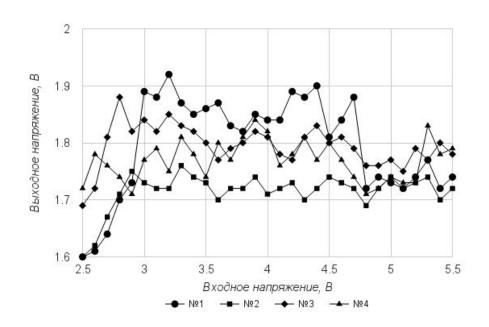
Удельная емкость доступных в выбранном техпроцессе MIM-конденсаторов 6.6 фФ/мкм².

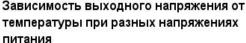
Типичная удельная емкость доступных МІМконденсаторов — 1-2 фФ/мкм² Возможна реализация на MOS-конденсаторах (~3 фФ/мкм² для транзисторов с питанием 5 В).

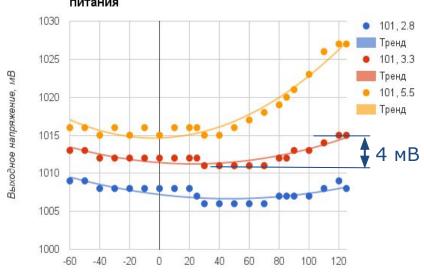
Тестовый кристалл

Тестовый кристалл был разработан и произведен по объемной КМОП технологии с проектными нормами 180 нм, пятью уровнями металлизации и МІМ-конденсаторами сэндвич-типа (2-5 металл).

Кристалл включает DC/DC преобразователь и отдельные тестовые структуры ключевых блоков.






Результаты измерений

Выходное напряжение ИОН находится в пределах ±2 мВ при стабилизированном питании в диапазоне температур -60~+125°C.

Подтверждена работоспособность чипов первой ревизии. С учетом результатов тестирования чипов внесены корректировки в дизайн и готовится к запуску вторая ревизия.

Температура

Текущее состояние работы

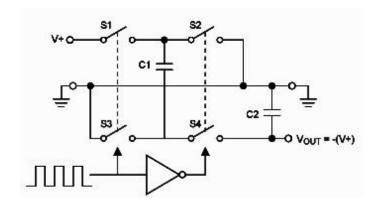
Готовность кристалла второй итерации, содержащего полнофункциональный прототип, ожидается в октябре-ноябре 2016 года.

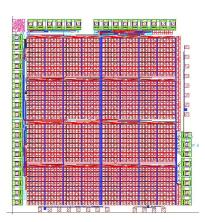
Ведется организационная подготовка к серийному производству.

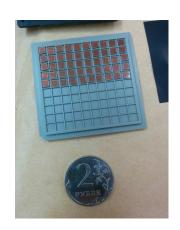
Прорабатывается возможность создания семейства DC/DC преобразователей, в том числе встраиваемых, и возможность переноса разработки на другие технологические процессы.

Оценка площади на 180 нм технологии при использовании MOSконденсаторов (на 100 мА выходного тока):

Топология 1:2 — 4-5 мм^2 (преобразование 5 В -> 1.8 В)


Топология 2:3 — 14-20 мм² (преобразование 3.3 В -> 1.8 В)


Типовое применение - встроенный преобразователь для питания ядра микроконтроллера, позволяющий устранить зависимость мощности от входного напряжения и уменьшить энергопотребление.


Разработка специализированных преобразователей под конкретные задачи позволит добиться лучших характеристик по площади и КПД.

Выводы

- Разработан полностью интегральный DC/DC преобразователь на переключаемых конденсаторах, подходящий для самостоятельного использования и интеграции в системы на кристалле.
- Разработанный преобразователь обладает более высоким КПД, чем линейный регулятор, и требует меньше пассивных компонентов и места на печатной плате, чем индуктивные преобразователи.
- Изготовлен и измерен тестовый кристалл, реализующий основные схемные и конструктивные решения, ведется подготовка полнофункционального прототипа.
- Прорабатывается возможность создания библиотеки специализированных встраиваемых преобразователей.

MEGARAD

Спасибо за внимание!

Валерий Шунков^{1,2}, Олег Кусь², Виталий Прокопьев¹, Владимир Бутузов^{1,3}, Юрий Бочаров³, Валентин Шунков⁴

1-000 «Мегарад», 2-000 «ОКБ Пятое Поколение»,

3 — НИЯУ «МИФИ», 4 — ФГУ ФНЦ НИИСИ РАН

shunkov@5okb.ru

Работа выполнена при поддержке фонда "Сколково"