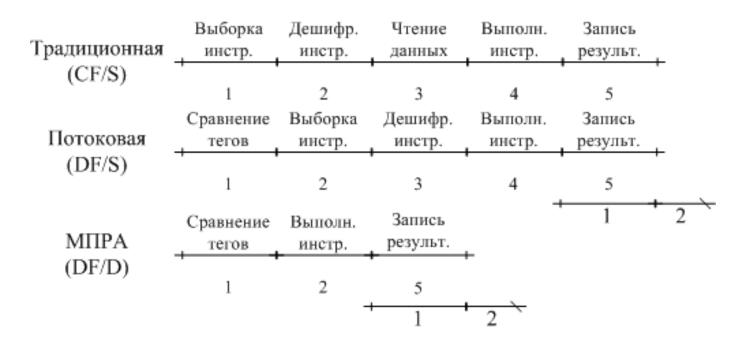
Рекуррентная потоковая архитектура: технические аспекты реализации и результаты моделирования

Д.В. Хилько, Ю.А. Степченков, Д.И. Шикунов, Ю.И. Шикунов

Институт проблем информатики РАН Федерального исследовательского центра «Информатика и управление» РАН

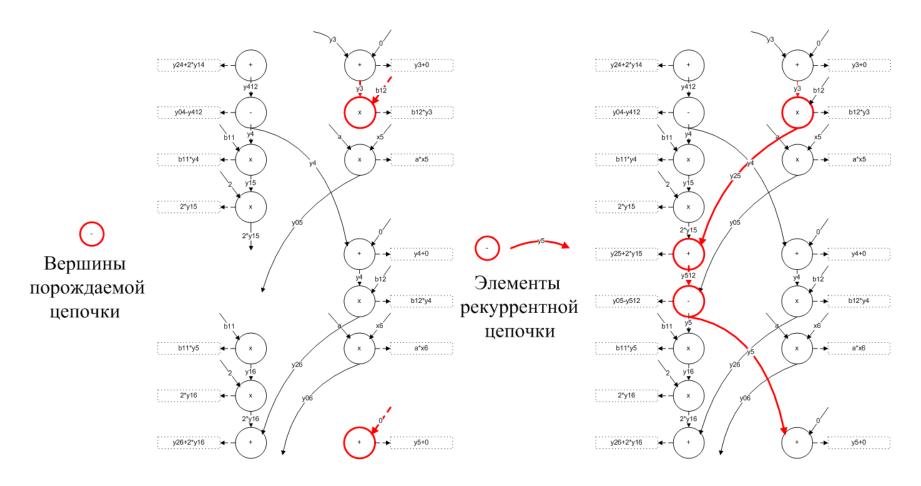
Содержание


- Введение
- Описание прототипа гибридной двухуровневой архитектуры рекуррентного обработчика сигналов (ГАРОС)
- Архитектурные особенности ГАРОС
- Демонстрация особенностей ГАРОС на примере быстрого преобразования Фурье (БПФ)
- Результаты аппаратно-программного моделирования ГАРОС
- Заключение

Введение

Ключевые этапы разработки потоковой рекуррентной архитектуры:

- Создание программной и аппаратной моделей, отражающих ключевые особенности и механизмы архитектуры
- Решение ряда проблем, присущих потоковым архитектурам, как классу
- Разработка специализированных средств программно-аппаратного моделирования
- Создание методик программирования и программная реализация целевых задач ЦОС
- Обработка результатов моделирования и оценка эффективности полученной реализации архитектуры

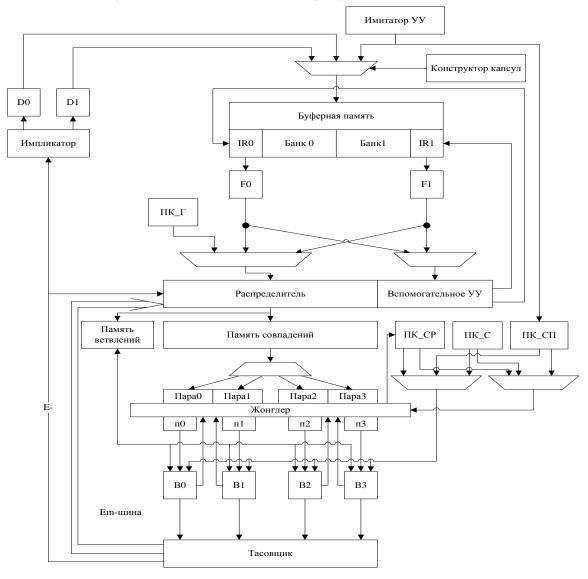

Основные принципы и преимущества архитектуры

Основные принципы:

- -Самодостаточность данных
- Рекуррентная организация вычислительного процесса

Имплементация рекуррентности

Разворачиваемый потоковый граф


Развернутый потоковый граф

Прототип многоядерной потоковой рекуррентной архитектуры

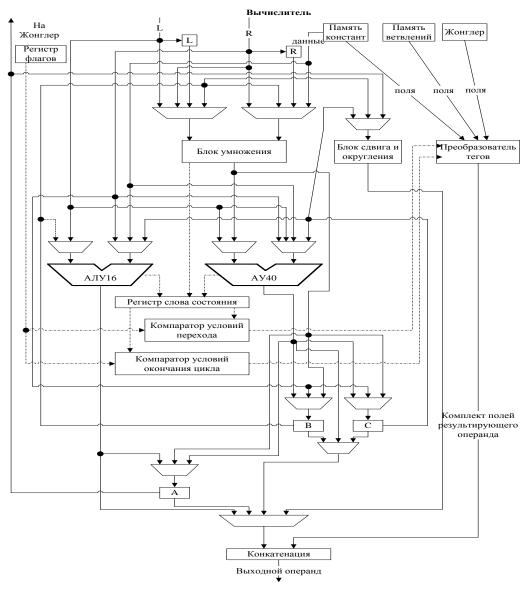
Наиболее целесообразным вариантом реализации рекуррентного обработчика сигналов (РОС) на основе ПЛИС является гибридная двухуровневая архитектура рекуррентного обработчика сигналов (ГАРОС):

- ведущий фон-неймановский процессор на управляющем (верхнем) уровне (УУ)
- ряд потоковых процессоров на нижнем уровне рекуррентном операционном устройстве (РОУ)

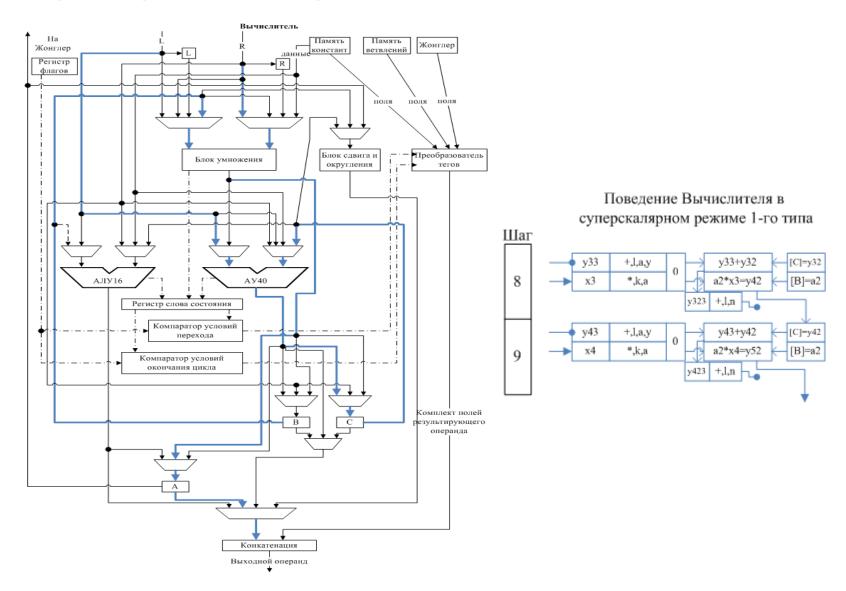
Архитектура РОУ

Организация вычислительного процесса РОУ

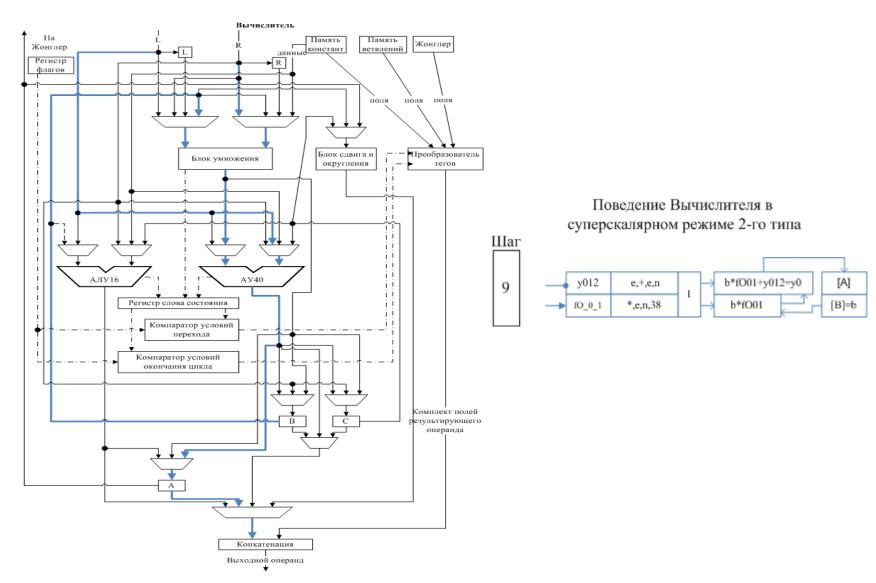
- Компонент Распределитель осуществляет выборку операндов из буферной памяти (БП) и их рассылку в соответствующие потоки (секции), заданные в теговых полях;
- Компонент Память совпадений (ПС) осуществляет сравнение теговых полей и формирование пар совпавших операндов;
- Компонент Жонглер осуществляет разделение единого потока самоопределяющихся данных на два потока – данных и инструкций, а также их распределение по входам Вычислителя;
- Компонент Вычислитель осуществляет выборку данных из заданных источников, вычисление результата и рекуррентные преобразования;
- Компонент Тасовщик осуществляет пересылку полученных результатов между параллельными потоками, а также в Импликатор;
- Компонент Импликатор осуществляет запись выходных данных в БП.

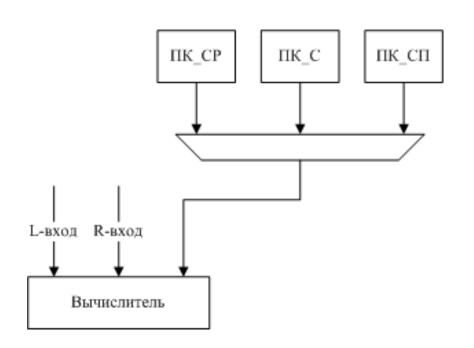

Распределение нагрузки двухуровневой архитектуры

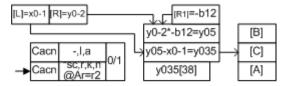
Задачи УУ	Задачи РОУ		
Вычисления (10%):	Вычисления (90%):		
Масштабирование данных	Фильтр Баттеруорта		
Автоматический контроль	Логарифмирование		
усиления	RASTA-фильтрация		
Определение начала слова	Экспоненцирование		
Определение конца слова	Косинусное ИДПФ		
Деление	Рекурсия Дурбина-Скурра		
Подготовка данных	PLP-параметры		
	Дельта-расширение		
	Евклидово расстояние		
	Витерби		

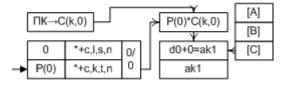

Архитектурные особенности ГАРОС

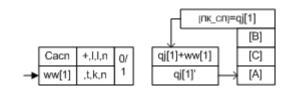
- Суперскалярная архитектура блока Вычислитель и поддержка рекурсии
- Механизмы работы с константными данными
- Поддержка циклических процедур (внутренние циклы)
- Многократное повторение программ и повторное использование выходных данных (внешние циклы)


Структурная схема модели Вычислителя

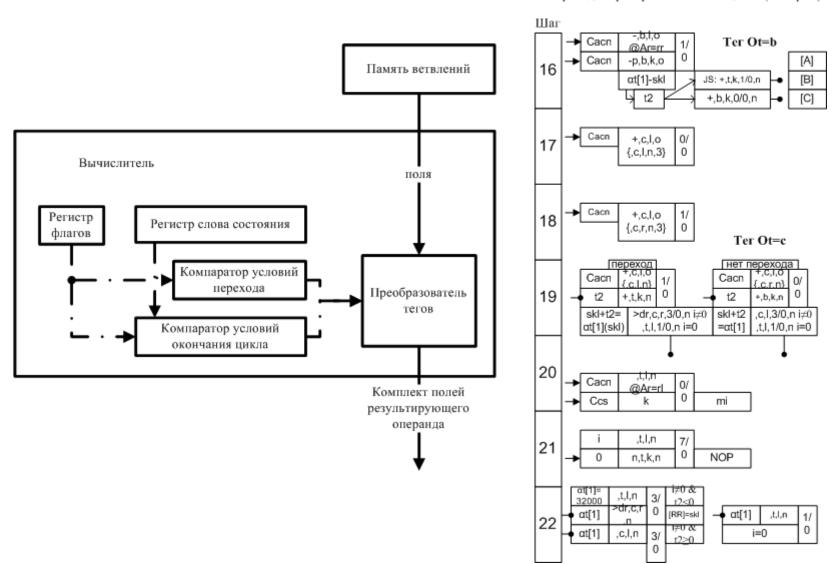

Суперскалярность Вычислителя


Суперскалярность Вычислителя


Обработка константных данных


Пример инициации ПК_СР (фильтр Баттеруорта) Тег $\mathbf{Ot} = \mathbf{r}$

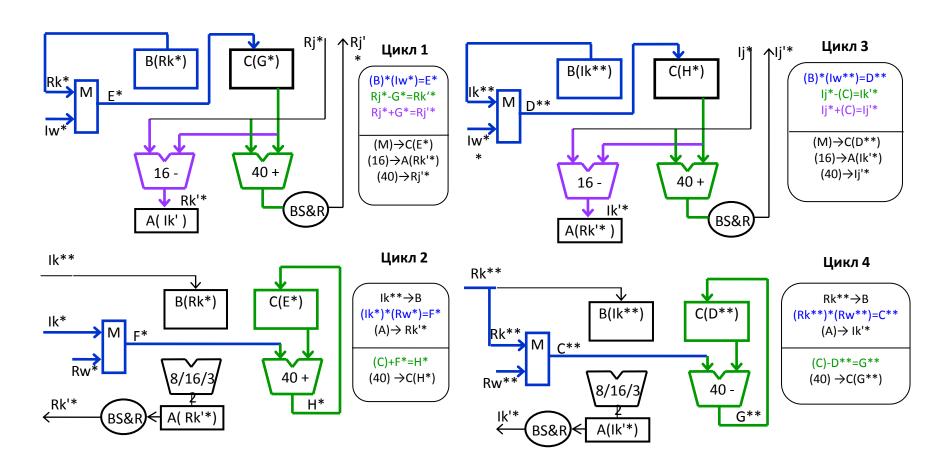
Пример инициации ПК_С (косинусное ИДПФ)
Тег Ot=s



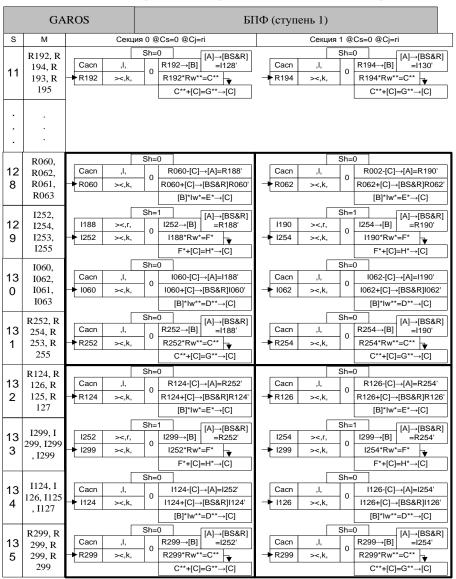
Пример инициации ПК_СП (Витерби)
Тег Ot=I

Поддержка внутренних и внешних циклов

Переход и проверка окончания цикла (Витерби)


Имплементация быстрого преобразования Фурье

Реализуемый алгоритм — 256-точечный БПФ по основанию 2 с прореживанием по времени.


Суть задачи состоит в вычислении 1024 типовых операций «бабочка». Эффективность реализации БПФ рассчитывалась на основе показателя времени вычисления преобразования (количество логических шагов).

В каждой секции вычисляется четырехцикловая операция «бабочка», поддерживая на аппаратном уровне. При этом за 4 вычислительных шага вычисляется 4 «бабочки». Суммарные временные затраты вычисления 1024 «бабочек» составили 1068 шагов (без учета предварительной загрузки данных).

Аппаратная поддержка БПФ (команда «бабочка»)

Фрагмент граф-капсулы БПФ

Результаты реализации демонстрационных алгоритмов

Название алгоритма	Кол-во шагов для dsPic30F	Кол-во шагов для РОУ	Коэф. ускорения	
БПФ2_256	~19000	~1100	~17,2	
Баттеруорт (одна секция)	679	299	2,27	
Баттеруорт ^{*)} (две секции)	1360	437	3,11	
Полосовой фильтр (одна полоса)	1428	442	3,23	
Натуральный логарифм (вариант 1)	36	19	1,89	
Натуральный логарифм х4 (вариант 2)	36*4	26	1,38*4	
RASTA фильтр	153	45	3,4	
Экспоненцирование (вариант 1)	32	13	2,46	
Экспоненцирование х4 (вариант 2)	32*4	20	1,6*4	
Косинусное ИДПФ	36	17	2,12	
Рекурсия Дурбина-Скурра	~800	~300	~2,7	
PLP параметры	144	32	4,5	
PLP параметры ^{*)}	144	30	4,8	
Витерби (расчет решетки для текущего N)	91*N-143	94*N	$\left(1 - \frac{8*N + 143}{94*N}\right) * 4$	
* модифицированная версия ГАРОС				

* модифицированная версия ГАРОС N – количество наблюдений в векторе наблюдений (N>5)

Заключение

В ходе реализации прототипа потоковой рекуррентной архитектуры получены следующие результаты:

- Построены программная имитационная модель, а также аппаратная VHDLмодель
- Найдены технические решения основных проблем, характерных для архитектур из класса потоковых
- В состав реализованного прототипа введены мощные средства поддержки БПФ эталонного алгоритма в классе задач ЦОС. Осуществлена программная реализация данного алгоритма
- Осуществлена реализация программы распознавания слов в среде ГАРОС, как эталона для сравнения с однокристальным исполнением (созданным в рамках совместного проекта с компанией Microchip)
- Произведено программно-аппаратное моделирование комплекса алгоритмов распознавания
- Осуществлена обработка и оценка результатов моделирования, согласно результатам которой, полученные коэффициенты ускорения относительно одноядерного исполнения варьируются в диапазоне от x3 до x17

Контакты

Директор: Академик Соколов И. А.

Адрес: Институт проблем информатики Федерального исследовательского центра «Информатика и управление» Российской академии наук (ИПИ РАН), Россия, 119333, Москва, ул. Вавилова, д. 44, корпус 2

- Телефон: +7 (495) 137 34 94
- Fax: +7 (495) 930 45 05
- E-mail: ISokolov@ipiran.ru
- Докладчик: Хилько Д. В., +7(495)381-45-21,
 dhilko@yandex.ru