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Abstract — Currently, fault tolerance of electronic 
equipment requires special attention. Application field of 
integrated circuits expands; at the same time, permissible 
limits of destabilizing effects, which increase vulnerability of 
integrated circuits, grow. It is often necessary to take into 
account requirements for fault tolerance and apply various 
methods and tools for developing the most stable circuits as 
early as at the design stage. As the result, there is a large 
demand for design automation tools for failure- and fault-
tolerant integrated circuits. 

This paper presents a method for combinational circuits 
synthesis based on general principles of evolutionary 
algorithms. This method allows synthesizing comparatively 
small logic circuits that are resistant to random failures 
induced by hits of heavy charged particles. 

Keywords — evolutionary synthesis, fault tolerance, 
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I. INTRODUCTION 
The problem of building fault-tolerant combinational 

circuits at logical level formulated as synthesis of reliable 
circuits from unreliable components was first posed in the 
fundamental work of Von Neumann [1] and was further 
developed in works of W.H. Pierce, J.G. Tryon, N. 
Pippenger [2-5]. Within the framework of this problem, a 
large number of different majority approaches were 
developed for protecting circuits at architectural level, such 
as logic circuits with cascade triple redundancy [2], with 
fourfold redundancy [3,4], randomly interlaced logic [5], 
etc. However, despite the large number of scientific 
publications, in practice, archaic methods of triple 
redundancy are still used to protect combinational circuits. 
This is because there are no clear criteria for evaluating 
effectiveness, and the methods are not enough studied for a 
large range of test circuits for real technology libraries. 

Within the proposed approach, we suggest to 
generalize the problem of improving fault tolerance of a 
given logic circuit to the problem of fault-tolerant 
combinational circuit synthesis. The problem of logical 
synthesis of circuits optimized for given parameters is, in 
fact, the task of selecting solution that is optimal or close to 
optimal from the whole space of possible solutions. 

If we have a logical function defined by expression or 
truth table, it is obvious that there is infinite set of logic 
circuits that implement this function. The task is to find a 
circuit that is satisfactory according to given criteria and 
belongs to the whole space of possible solutions. 

Conventional methods of improving fault tolerance 
transform original circuit without changing its logical 
function and implement one specific solution for each 
circuit. Exhaustive search is impossible; therefore, various 
heuristics are often used in problems of logical synthesis 
(Espresso, MIS II, ...). 

In this paper we propose using genetic methods [6,7] to 
search for circuits that are near-optimal for criteria 
considering fault tolerance and architectural redundancy. 

II. DATA REPRESENTATION FOR GENETIC ALGORITHM

Let us define basic data structures for combinational 
circuit representation in the form of phenotype and 
genotype; and define basic operators on these structures. 
We define phenotype as immediate netlist of 
combinational circuit. Its primary purpose is getting output 
vector when input stimulus are fed. Genotype backs 
genetic procedures such as crossover, mutation, etc. 

A. Phenotype 

Circuit is represented as the list of input labels, list of 
output labels and dictionary of gates. Here dictionary is 
associative array with keyed access similar to that in 
Python, where key is logic gate label and array element is 
structure containing gate type and labels of gates connected 
to its outputs. Consider ISCAS testbench circuit C17 as an 
example of phenotype description (Fig. 1).  

Fig. 1. Testbench circuit ISCAS’85 C17 

This circuit is represented as the following structure 
(Fig. 2). 
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Fig. 2. Phenotype of a circuit ISCAS’85 C17 

Simulation function is the base class method for circuit 
phenotype; it is the basis of other procedures related to 
fault tolerance evaluation, etc. Its input is binary vector of 
input stimulus and binary error vector, length of which is 
the number of gates: if the gate is faulty, the corresponding 
element of error vector takes value “1”, if there is no error, 
value is “0”. Function output is the circuit reaction to the 
impact. 

B. Genotype 
To present circuit in the form of chromosome we have 

to implement some one-dimensional representation that is 
unique for given circuit structure. Ordered linear 
representation of the combinational circuit was developed 
for this purpose. Similar to phenotype, basic element of 
this representation is structure containing gate type and 
references to gates linked to the outputs, except that gate 
position in the array of gates is given instead of gate label. 
Logic gates in chromosome are sorted according to their 
topological order. In addition, positions of gates connected 
to circuit outputs, as well as characteristic of number of 
inputs, are given. Genotype of a circuit C17 from ISCAS 
testbench is shown in Fig. 3. 

Fig. 3. Genotype of a circuit ISCAS’85 C17 

This representation, as opposed to phenotype, 
complicates even the easiest operators concerning circuits, 
such as merging circuits or replacing subcircuits, etc., 

because permanent re-numbering and re-sorting is needed; 
however, it facilitates actions related to genetic operators. 
The proposed chromosome representation has several 
advantages. First, it allows encoding circuits with arbitrary 
number of gates, which is not typical for evolutionary 
synthesis methods [8]. Second, this representation allows 
easy implementation of main genetic operators, such as 
mutation and crossover, even with varying chromosome 
lengths. Note that in this context, crossover means not only 
exchange of subcircuits, but also implicit interconnections 
exchange. 

III. BASIC GENETIC OPERATORS

Further we consider basic genetic operators required 
for efficient algorithm implementation.  

Initial population creation. To create initial population, 
we implemented generator of arbitrary circuits. This stage 
begins with getting the number of inputs and outputs. The 
number of logic gates in the circuit is determined by 
selecting a random integer from the normal distribution 
with expectation µ = (m + n) and standard deviation σ, the 
value of which is transferred to the generation function. 
Next comes the process of generating of logic gates. For 
each gate, its type is selected randomly from the standard 
library. Then, input labels are selected for this element, 
indicating the circuit inputs or the outputs of already 
existing elements. The process of creating such schemes 
continues until the population is completely filled. The rate 
of convergence and efficiency of the entire algorithm 
depends on the quality of the initial population.  

In some cases it is possible to effectively introduce 
parts of circuits synthesized from the reference function by 
traditional methods. However, this often leads to rapid 
reproduction of exactly these synthesized circuits.  

Fitness function. Fitness function of the proposed 
genetic algorithm is as follows: 

𝑓𝑓 = 𝜀𝜀 + ⌊𝜀𝜀⌋ ∙ 𝛼𝛼 (1) 

where f  is fitness function, ε – degree of proximity of the 
individual function with the reference function, α – 
coefficient of logic sensitivity to random failures [9,10]. 

This metric is based on Von Neumann probabilistic 
error model [1], which implies that output value of any 
gate can be inverted independently of other gates with 
some fixed probability. If we define binary vector 𝑋𝑋�  as 
input vector and vector  �̅�𝑒 with logic “1” at positions for 
faulty gates as error vector, coefficient of logic sensitivity 
to random failures is defined as follows: 

𝛼𝛼 =
1

2𝑁𝑁
� 𝐸𝐸(𝑋𝑋�, �̅�𝑒)

𝑋𝑋�,�̅�𝑒,|�̅�𝑒|=1

  ,  (2) 

where 𝑁𝑁  is the number of inputs and  𝐸𝐸(𝑋𝑋�, �̅�𝑒)  denotes 
characteristic function of set of vector pairs: 

𝐸𝐸(𝑋𝑋�, �̅�𝑒) = �1, 𝑖𝑖𝑓𝑓 𝑠𝑠𝑒𝑒𝑠𝑠 (𝑋𝑋�, �̅�𝑒) 𝑟𝑟𝑒𝑒𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟
0, 𝑒𝑒𝑠𝑠ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
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Coefficient of logic sensitivity for a circuit is the sum 
of gate observabilities = ∑ 𝑒𝑒𝑖𝑖i∈Ω  ; it characterizes average 
number of faulty gates, that is, the gates for which error 
propagates to circuit outputs. Gate observability is the 
probability that failure at this gate is not masked and 
affects circuit output given that no errors occurred at the 
other gates. Observability is calculated by the formula: 

𝜊𝜊𝑖𝑖 = 1
2𝑁𝑁
∑ 𝐸𝐸(𝑋𝑋�, �̅�𝑒𝑘𝑘)𝑋𝑋� , 

where vector �̅�𝑒𝑘𝑘  has single “1” at position 𝑒𝑒𝑖𝑖, while all the 
other values  𝑒𝑒𝑗𝑗≠𝑖𝑖 = 0. 

Computational complexity of this metric is linear with 
respect to the number of gates, which, together with the 
methods of bit-parallel modeling and Monte-Carlo 
methods, allows using this metric for relatively large 
circuits. The proposed coefficient does not depend on the 
probability of gate failure. Thus, it can be used at early 
stages of fault-tolerant circuits design. This metric is 
effective for comparing fault-tolerant methods when 
element base and operating conditions of the circuit are not 
known. For most practical applications when probability of 
gate failure tends to zero — this approximation is the most 
accurate, being tangent to the graph of error polynomial at 
point zero. 

Proximity value ε varies from 0 to 1 and can be 
calculated in various ways. The simplest method is 
simulation and counting deal of coincidences with 
reference. It is more efficient to count deal of coincidences 
for each output of the circuit separately. That provides 
more information for genetic algorithm and speeds up the 
process of convergence of evolutionary search. 

As we can see from formula (1), fault-tolerance 
characteristics of the circuit start to effect fitness function 
only when ε=1, in other words, when circuit becomes 
equal to reference function. That provides smooth 
evolutionary search: first, circuits that implement the 
required function; then, circuits with better fault tolerance. 

Selection of parents. There are two popular methods to 
apply when performing selection in genetic algorithms, 
roulette wheel selection and tournament selection. Both use 
probability to create bias in choosing fitter chromosomes to 
serve as the parents. We implemented both in our study, 
but they showed almost the same properties as applied to 
our problem. 

Crossover. Crossover is crossing two parent 
chromosomes and producing two offspring. This is done 
by selecting two cut points on the parent chromosomes, 
followed by exchange of sections. For this, two individuals 
need to be randomly selected from the parent pool. After 
that, a random real number is generated in the range from 0 
to 1. This number is compared with the crossover 
probability, which is transmitted as a parameter of the 
crossover operator. If the resulting number does not exceed 
the probability, a crossing occurs. With 2-point crossover, 
the parent chromosomes are divided into three sections, the 
positions of the two separators d1 and d2 are determined 
randomly. After this, descendants are created by 
concatenating sections of the parent chromosomes. The 

created descendants are placed in the population, and the 
parents participating in the crossing are removed from the 
population. Since this process is random, there may be a 
situation in which crossing does not occur. In this case, the 
parents remain in the population. The following is an 
example of 2-point crossover (Fig. 4): 

Fig. 4. The example of 2-point crossover 

As the result, it is possible to exchange not only 
element types, but also some of their interrelations. Note 
that such cross operation can be applied to chromosomes, 
lengths of which differ. Crossover with two cut points can 
be implemented in similar way. 

Mutation. Individual mutation is distortion of some 
chromosome genes, that is, alteration of several element 
types or interconnects. The mutation operation is applied to 
all individuals in the population, obtained after crossover. 
For each allele, a random real number is generated from 0 
to 1, if this number does not exceed the probability of 
mutation, the current allele mutates, forming a new 
genotype pattern. At this stage, we create an alternative 
population, which consists of mutant individuals and 
individuals that have not undergone mutations. The 
probability of a mutation is determined by the parameter 
that is passed to the mutation function. The following is an 
example mutation process (Fig. 5): 

Fig. 5. The example of mutation process 

It is proposed to use adaptive mutation method, which 
implies variable probability of gene mutation depending on 
the current rate of convergence of evolutionary process. In 
case of long stagnation, probability of mutation for each 
gene gradually increases until genetic algorithm leaves the 
local optimum. 

Selection. Selection is the process of selecting 
individuals for new population. As part of selection, we 
can use asymmetric roulette wheel method, race method, 
or simple ranking method, when n best adapted individuals 
are selected. For a number of cases the so-called "elitism" 
is effective, when the most adapted individual is 
guaranteed to enter new population. This technique makes 
the process of evolutionary search more predictable, but 
can lead to premature convergence to a local optimum.   
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IV. BASIC ALGORITHM STRUCTURE

Fig. 6 presents basic flow of fault-tolerant 
combinational circuit synthesis with the use of genetic 
algorithm. 

At the first stage initial population is generated. After 
that, fitness function for each individual is estimated. At 
the next stage parents for crossing are selected. This choice 
is made either by asymmetric roulette wheel method or by 
race method. After that, crossover and mutation of a 
certain fraction of descendants are realized. After that, 
initial population and population of descendants are 
combined and the stage of selection into new population is 
implemented. After this, a new cycle of genetic algorithm 
is started. 

Fig. 6. Basic structure of genetic algorithm 

To speed up the process of convergence and reduce the 
problems associated with premature convergence to local 
extremes, a number of methods related to the use of 
dynamic fitness function have been proposed, as well as 
methods of adaptive mutation. Also, we proposed that 
fitness function of genetic algorithm should include 
entropy parameter of combinational circuits alongside with 
such parameters as proximity to reference function and 
logical sensitivity to failures. This allows us to cut off 
trivial cases where structurally very simple solution 
immediately turns out to be quite close to reference 
function, but cannot get closer to it by any gradual 
changes. The decisions we made resulted in the 
development of software package in which we could 
implement synthesis of small combinational circuits with 
improved fault tolerance parameters.  

V. EXPERIMENTAL RESULTS 
In the course of adjusting of genetic algorithm 

parameters, large number of computational experiments 
were carried out. During this process, we built a number of 
combinational circuits with improved fault tolerance 
characteristics.  

We estimated average time spent for our evolutionary 
synthesis. It differs greatly depending on number of inputs 
and especially outputs.   

Table 1 

Average runtime for evolutionary synthesis 

2 inputs 3 inputs 4 inputs 
1 out 2 out 1 out 2 out 1 out 2 out 

Time, sec  0.14 4.29 0.275 5.242 0.223 7.045 

Fig. 6 shows an example of evolutionary synthesis of 
full adder circuit. Average value of fitness function across 
the population is shown in blue, red is the maximum value, 
and yellow is average value of entropy. Synthesis process 
required less than 300 generations.  

Fig. 7. Genetic synthesis of full adder 

VI. SUMMARY

The paper presents a method for synthesis of fault-
tolerant combinational circuits based on genetic algorithm. 
Basic structure of the algorithm is described, as well as 
some details of data representation and main genetic 
operators. Failure metric of combinational circuit is 
embedded into fitness function of the algorithm. This 
metric characterizes the average number of unreliable 
gates, that is, the gates whose failures affect circuit output. 

The method shows good convergence for small 
circuits; first, selection is carried out with respect to 
proximity of the function to the reference one; then, fault 
tolerance metric is taken into account. 

We should point out a drawback of the method, 
namely, the algorithm can appear to be understable. 
Currently, it can happen that the appropriate combinational 
circuit is not found or the algorithm works too long 
because of falling into a local optimum. Such behavior 
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additionally constrains possible application scope of this 
method. 

Further work will be focused on improving 
predictability of the algorithm, increasing convergence rate 
and extending the range of applicability to medium-sized 
logic circuits.  
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