
Selected Articles of MES conference, 2019, ussue 1 © IPPM RAS

DOI 10.31114/2078-7707-2019-1-2-6

Automated Evolutionary Design of Fault-Tolerant Logic Circuits
S.V. Gavrilov, D.V. Telpukhov

Institute for Design Problems in Microelectronics of RAS, Moscow, nofrost@inbox.ru

Abstract — Currently, fault tolerance of electronic
equipment requires special attention. Application field of
integrated circuits expands; at the same time, permissible
limits of destabilizing effects, which increase vulnerability of
integrated circuits, grow. It is often necessary to take into
account requirements for fault tolerance and apply various
methods and tools for developing the most stable circuits as
early as at the design stage. As the result, there is a large
demand for design automation tools for failure- and fault-
tolerant integrated circuits.

This paper presents a method for combinational circuits
synthesis based on general principles of evolutionary
algorithms. This method allows synthesizing comparatively
small logic circuits that are resistant to random failures
induced by hits of heavy charged particles.

Keywords — evolutionary synthesis, fault tolerance,
combinational circuits, genetic algorithms.

I. INTRODUCTION
The problem of building fault-tolerant combinational

circuits at logical level formulated as synthesis of reliable
circuits from unreliable components was first posed in the
fundamental work of Von Neumann [1] and was further
developed in works of W.H. Pierce, J.G. Tryon, N.
Pippenger [2-5]. Within the framework of this problem, a
large number of different majority approaches were
developed for protecting circuits at architectural level, such
as logic circuits with cascade triple redundancy [2], with
fourfold redundancy [3,4], randomly interlaced logic [5],
etc. However, despite the large number of scientific
publications, in practice, archaic methods of triple
redundancy are still used to protect combinational circuits.
This is because there are no clear criteria for evaluating
effectiveness, and the methods are not enough studied for a
large range of test circuits for real technology libraries.

Within the proposed approach, we suggest to
generalize the problem of improving fault tolerance of a
given logic circuit to the problem of fault-tolerant
combinational circuit synthesis. The problem of logical
synthesis of circuits optimized for given parameters is, in
fact, the task of selecting solution that is optimal or close to
optimal from the whole space of possible solutions.

If we have a logical function defined by expression or
truth table, it is obvious that there is infinite set of logic
circuits that implement this function. The task is to find a
circuit that is satisfactory according to given criteria and
belongs to the whole space of possible solutions.

Conventional methods of improving fault tolerance
transform original circuit without changing its logical
function and implement one specific solution for each
circuit. Exhaustive search is impossible; therefore, various
heuristics are often used in problems of logical synthesis
(Espresso, MIS II, ...).

In this paper we propose using genetic methods [6,7] to
search for circuits that are near-optimal for criteria
considering fault tolerance and architectural redundancy.

II. DATA REPRESENTATION FOR GENETIC ALGORITHM

Let us define basic data structures for combinational
circuit representation in the form of phenotype and
genotype; and define basic operators on these structures.
We define phenotype as immediate netlist of
combinational circuit. Its primary purpose is getting output
vector when input stimulus are fed. Genotype backs
genetic procedures such as crossover, mutation, etc.

A. Phenotype

Circuit is represented as the list of input labels, list of
output labels and dictionary of gates. Here dictionary is
associative array with keyed access similar to that in
Python, where key is logic gate label and array element is
structure containing gate type and labels of gates connected
to its outputs. Consider ISCAS testbench circuit C17 as an
example of phenotype description (Fig. 1).

Fig. 1. Testbench circuit ISCAS’85 C17

This circuit is represented as the following structure
(Fig. 2).

2

Fig. 2. Phenotype of a circuit ISCAS’85 C17

Simulation function is the base class method for circuit
phenotype; it is the basis of other procedures related to
fault tolerance evaluation, etc. Its input is binary vector of
input stimulus and binary error vector, length of which is
the number of gates: if the gate is faulty, the corresponding
element of error vector takes value “1”, if there is no error,
value is “0”. Function output is the circuit reaction to the
impact.

B. Genotype
To present circuit in the form of chromosome we have

to implement some one-dimensional representation that is
unique for given circuit structure. Ordered linear
representation of the combinational circuit was developed
for this purpose. Similar to phenotype, basic element of
this representation is structure containing gate type and
references to gates linked to the outputs, except that gate
position in the array of gates is given instead of gate label.
Logic gates in chromosome are sorted according to their
topological order. In addition, positions of gates connected
to circuit outputs, as well as characteristic of number of
inputs, are given. Genotype of a circuit C17 from ISCAS
testbench is shown in Fig. 3.

Fig. 3. Genotype of a circuit ISCAS’85 C17

This representation, as opposed to phenotype,
complicates even the easiest operators concerning circuits,
such as merging circuits or replacing subcircuits, etc.,

because permanent re-numbering and re-sorting is needed;
however, it facilitates actions related to genetic operators.
The proposed chromosome representation has several
advantages. First, it allows encoding circuits with arbitrary
number of gates, which is not typical for evolutionary
synthesis methods [8]. Second, this representation allows
easy implementation of main genetic operators, such as
mutation and crossover, even with varying chromosome
lengths. Note that in this context, crossover means not only
exchange of subcircuits, but also implicit interconnections
exchange.

III. BASIC GENETIC OPERATORS

Further we consider basic genetic operators required
for efficient algorithm implementation.

Initial population creation. To create initial population,
we implemented generator of arbitrary circuits. This stage
begins with getting the number of inputs and outputs. The
number of logic gates in the circuit is determined by
selecting a random integer from the normal distribution
with expectation µ = (m + n) and standard deviation σ, the
value of which is transferred to the generation function.
Next comes the process of generating of logic gates. For
each gate, its type is selected randomly from the standard
library. Then, input labels are selected for this element,
indicating the circuit inputs or the outputs of already
existing elements. The process of creating such schemes
continues until the population is completely filled. The rate
of convergence and efficiency of the entire algorithm
depends on the quality of the initial population.

In some cases it is possible to effectively introduce
parts of circuits synthesized from the reference function by
traditional methods. However, this often leads to rapid
reproduction of exactly these synthesized circuits.

Fitness function. Fitness function of the proposed
genetic algorithm is as follows:

𝑓𝑓 = 𝜀𝜀 + ⌊𝜀𝜀⌋ ∙ 𝛼𝛼 (1)

where f is fitness function, ε – degree of proximity of the
individual function with the reference function, α –
coefficient of logic sensitivity to random failures [9,10].

This metric is based on Von Neumann probabilistic
error model [1], which implies that output value of any
gate can be inverted independently of other gates with
some fixed probability. If we define binary vector 𝑋𝑋� as
input vector and vector �̅�𝑒 with logic “1” at positions for
faulty gates as error vector, coefficient of logic sensitivity
to random failures is defined as follows:

𝛼𝛼 =
1

2𝑁𝑁
� 𝐸𝐸(𝑋𝑋�, �̅�𝑒)

𝑋𝑋�,�̅�𝑒,|�̅�𝑒|=1

 , (2)

where 𝑁𝑁 is the number of inputs and 𝐸𝐸(𝑋𝑋�, �̅�𝑒) denotes
characteristic function of set of vector pairs:

𝐸𝐸(𝑋𝑋�, �̅�𝑒) = �1, 𝑖𝑖𝑓𝑓 𝑠𝑠𝑒𝑒𝑠𝑠 (𝑋𝑋�, �̅�𝑒) 𝑟𝑟𝑒𝑒𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟
0, 𝑒𝑒𝑠𝑠ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

3

Coefficient of logic sensitivity for a circuit is the sum
of gate observabilities = ∑ 𝑒𝑒𝑖𝑖i∈Ω ; it characterizes average
number of faulty gates, that is, the gates for which error
propagates to circuit outputs. Gate observability is the
probability that failure at this gate is not masked and
affects circuit output given that no errors occurred at the
other gates. Observability is calculated by the formula:

𝜊𝜊𝑖𝑖 = 1
2𝑁𝑁
∑ 𝐸𝐸(𝑋𝑋�, �̅�𝑒𝑘𝑘)𝑋𝑋� ,

where vector �̅�𝑒𝑘𝑘 has single “1” at position 𝑒𝑒𝑖𝑖, while all the
other values 𝑒𝑒𝑗𝑗≠𝑖𝑖 = 0.

Computational complexity of this metric is linear with
respect to the number of gates, which, together with the
methods of bit-parallel modeling and Monte-Carlo
methods, allows using this metric for relatively large
circuits. The proposed coefficient does not depend on the
probability of gate failure. Thus, it can be used at early
stages of fault-tolerant circuits design. This metric is
effective for comparing fault-tolerant methods when
element base and operating conditions of the circuit are not
known. For most practical applications when probability of
gate failure tends to zero — this approximation is the most
accurate, being tangent to the graph of error polynomial at
point zero.

Proximity value ε varies from 0 to 1 and can be
calculated in various ways. The simplest method is
simulation and counting deal of coincidences with
reference. It is more efficient to count deal of coincidences
for each output of the circuit separately. That provides
more information for genetic algorithm and speeds up the
process of convergence of evolutionary search.

As we can see from formula (1), fault-tolerance
characteristics of the circuit start to effect fitness function
only when ε=1, in other words, when circuit becomes
equal to reference function. That provides smooth
evolutionary search: first, circuits that implement the
required function; then, circuits with better fault tolerance.

Selection of parents. There are two popular methods to
apply when performing selection in genetic algorithms,
roulette wheel selection and tournament selection. Both use
probability to create bias in choosing fitter chromosomes to
serve as the parents. We implemented both in our study,
but they showed almost the same properties as applied to
our problem.

Crossover. Crossover is crossing two parent
chromosomes and producing two offspring. This is done
by selecting two cut points on the parent chromosomes,
followed by exchange of sections. For this, two individuals
need to be randomly selected from the parent pool. After
that, a random real number is generated in the range from 0
to 1. This number is compared with the crossover
probability, which is transmitted as a parameter of the
crossover operator. If the resulting number does not exceed
the probability, a crossing occurs. With 2-point crossover,
the parent chromosomes are divided into three sections, the
positions of the two separators d1 and d2 are determined
randomly. After this, descendants are created by
concatenating sections of the parent chromosomes. The

created descendants are placed in the population, and the
parents participating in the crossing are removed from the
population. Since this process is random, there may be a
situation in which crossing does not occur. In this case, the
parents remain in the population. The following is an
example of 2-point crossover (Fig. 4):

Fig. 4. The example of 2-point crossover

As the result, it is possible to exchange not only
element types, but also some of their interrelations. Note
that such cross operation can be applied to chromosomes,
lengths of which differ. Crossover with two cut points can
be implemented in similar way.

Mutation. Individual mutation is distortion of some
chromosome genes, that is, alteration of several element
types or interconnects. The mutation operation is applied to
all individuals in the population, obtained after crossover.
For each allele, a random real number is generated from 0
to 1, if this number does not exceed the probability of
mutation, the current allele mutates, forming a new
genotype pattern. At this stage, we create an alternative
population, which consists of mutant individuals and
individuals that have not undergone mutations. The
probability of a mutation is determined by the parameter
that is passed to the mutation function. The following is an
example mutation process (Fig. 5):

Fig. 5. The example of mutation process

It is proposed to use adaptive mutation method, which
implies variable probability of gene mutation depending on
the current rate of convergence of evolutionary process. In
case of long stagnation, probability of mutation for each
gene gradually increases until genetic algorithm leaves the
local optimum.

Selection. Selection is the process of selecting
individuals for new population. As part of selection, we
can use asymmetric roulette wheel method, race method,
or simple ranking method, when n best adapted individuals
are selected. For a number of cases the so-called "elitism"
is effective, when the most adapted individual is
guaranteed to enter new population. This technique makes
the process of evolutionary search more predictable, but
can lead to premature convergence to a local optimum.

4

IV. BASIC ALGORITHM STRUCTURE

Fig. 6 presents basic flow of fault-tolerant
combinational circuit synthesis with the use of genetic
algorithm.

At the first stage initial population is generated. After
that, fitness function for each individual is estimated. At
the next stage parents for crossing are selected. This choice
is made either by asymmetric roulette wheel method or by
race method. After that, crossover and mutation of a
certain fraction of descendants are realized. After that,
initial population and population of descendants are
combined and the stage of selection into new population is
implemented. After this, a new cycle of genetic algorithm
is started.

Fig. 6. Basic structure of genetic algorithm

To speed up the process of convergence and reduce the
problems associated with premature convergence to local
extremes, a number of methods related to the use of
dynamic fitness function have been proposed, as well as
methods of adaptive mutation. Also, we proposed that
fitness function of genetic algorithm should include
entropy parameter of combinational circuits alongside with
such parameters as proximity to reference function and
logical sensitivity to failures. This allows us to cut off
trivial cases where structurally very simple solution
immediately turns out to be quite close to reference
function, but cannot get closer to it by any gradual
changes. The decisions we made resulted in the
development of software package in which we could
implement synthesis of small combinational circuits with
improved fault tolerance parameters.

V. EXPERIMENTAL RESULTS
In the course of adjusting of genetic algorithm

parameters, large number of computational experiments
were carried out. During this process, we built a number of
combinational circuits with improved fault tolerance
characteristics.

We estimated average time spent for our evolutionary
synthesis. It differs greatly depending on number of inputs
and especially outputs.

Table 1

Average runtime for evolutionary synthesis

2 inputs 3 inputs 4 inputs
1 out 2 out 1 out 2 out 1 out 2 out

Time, sec 0.14 4.29 0.275 5.242 0.223 7.045

Fig. 6 shows an example of evolutionary synthesis of
full adder circuit. Average value of fitness function across
the population is shown in blue, red is the maximum value,
and yellow is average value of entropy. Synthesis process
required less than 300 generations.

Fig. 7. Genetic synthesis of full adder

VI. SUMMARY

The paper presents a method for synthesis of fault-
tolerant combinational circuits based on genetic algorithm.
Basic structure of the algorithm is described, as well as
some details of data representation and main genetic
operators. Failure metric of combinational circuit is
embedded into fitness function of the algorithm. This
metric characterizes the average number of unreliable
gates, that is, the gates whose failures affect circuit output.

The method shows good convergence for small
circuits; first, selection is carried out with respect to
proximity of the function to the reference one; then, fault
tolerance metric is taken into account.

We should point out a drawback of the method,
namely, the algorithm can appear to be understable.
Currently, it can happen that the appropriate combinational
circuit is not found or the algorithm works too long
because of falling into a local optimum. Such behavior

5

additionally constrains possible application scope of this
method.

Further work will be focused on improving
predictability of the algorithm, increasing convergence rate
and extending the range of applicability to medium-sized
logic circuits.

REFERENCES
[1] J. von Neumann, “Probabilistic Logics and the Synthesis of

Reliable Organisms from Unreliable Components”,
Automata Studies, C.E. Shannon and J. McCarthy, eds.,
Princeton Univ. Press, 1956, pp. 43-98.

[2] W.H. Pierce, Failure-Tolerant Computer Design, Academic
Press, 1965.

[3] J.G. Tryon, “Quadded Logic”, Redundancy Techniques for
Computing Systems, R.H. Wilcox and W.C. Mann, eds.,
Spartan Books, 1962, pp. 205-228.

[4] P.A. Jensen, Quadded NOR Logic, IEEE Trans. Reliability,
vol. 12, no. 3, Sept. 1963, pp. 22-31.

[5] N. Pippenger, Developments in ‘The Synthesis of Reliable
Organisms from Unreliable Components’. Proc. Symposia

in Mathematics, American Mathematical Society, 1990, pp.
311-324.

[6] Gladkov L.A., Kurejchik V.V., Kurejchik V.M.
Geneticheskie algoritmy - Genetic Algorithms, Moscow,
2010. (2-nd edition) (in Russian)

[7] Kurejchik V.V., Kurejchik V.M., Rodzin S.I. Teorija
jevoljucionnyh vychislenij - Theory of evolutionary
computation, Moscow, 2012 (in Russian).

[8] Coello, C.A., Christiansen, A.D., Aguirre, A.H. Use of
Evolutionary Techniques to Automate the Design of
Combinational Circuits. International Journal of Smart
Engineering System Design, 2000.

[9] Tel'puhov D.V., Solov'ev R.A., Mjachikov M.V. Razrabotka
prakticheskih metrik dlja ocenki metodov povyshenija
sboeustojchivosti kombinacionnyh shem. Informacionnye
tehnologii i matematicheskoe modelirovanie sistem, 2015,
Trudy mezhdunarodnoj nauchno-tehnicheskoj konferencii,
2015, pp. 79-81 (in Russian).

[10] Stempkovskiy A.L., Telpukhov D.V., Solov'ev R.A.,
Mjachikov M.V. Povyshenie otkazoustojchivosti
logicheskih shem s ispol'zovaniem nestandartnyh
mazhoritarnyh jelementov. Informacionnye tehnologii,
2015, Vol. 21, No.10, pp. 749-756 (in Russian).

6

