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Abstract — In connection with the architectural 
complexity of modern multi-core structures, more than 60% 
of the design resources are spent on verification during the 
development of the processor. Automatic generation of tests 
is often used to increase test coverage and reduce overall test 
time. Therefore, the creation of verification test generators to 
verify the correct operation of microprocessors is becoming 
increasingly important. 

This paper describes the technique of development of the 
several tests generators used for microprocessor verification. 
The first one is designed for VLIW package generating. The 
second one is for the verification of the control flow. With the 
help of it sequences of assembler instructions are created to 
check the pipeline. Software and hardware cycles, 
subprogram calls, conditional and unconditional conversions 
are possible. The third generator is aimed at checking the 
cache memory of processor. It is based on the graph model of 
the memory subsystem built by its description. 

In the suggested approach, source code of the tests is 
constructed by using combinatorial techniques, that is all 
possible combinations of instructions, situations, and 
dependencies are sorted taking into account the constraints 
that direct the tests to check certain situations and also 
exclude the possibility of generating infinite cycles. The 
generated test sequences allow for various tests.  

To create more complex tests possible integration of 
generators into each other is considered, since the interaction 
of different devices of the processor generates a large 
number of critical situations. The proposed approach makes 
it possible to improve the efficiency of microprocessor 
testing. 

Keywords — verification of processors, wide command 
word, memory subsystem, test generation, coverage. 

I. INTRODUCTION 

Due to the architectural complexity of modern multi-
core processors used in developing systems on a chip 
(SoC), more than sixty percent of design resources are 
spent on their verification. This is because the high 
combinatorial complexity of checking the correctness of 
the work of both single cores and the system as a whole. In 
addition, there is a tendency of SoC complication due to 
the increase of heterogeneity associated with the need to 

increase the speed of performing certain classes of tasks. 
Such computing systems consist of general-purpose and 
specialized computing cores. That is, the task is to check 
the implementations of different architectures of the 
computational cores that are part of the designed SoC, 
which may differ not only by the command system, but 
also by the way the commands are assembled into a VLIW 
package (VLIW - Very Long Instruction Word), its width, 
the organization of register files, caches and much more. 
The computational complexity of modern formal 
verification algorithms limits the scope of their use by 
small blocks (such as ALU or single elements of the 
memory subsystem) or separate processor properties that 
are easily localized, which sharply limits the use of formal 
methods for tests of the full processor core level [1-4]. In 
this way, dynamic verification is still one of the main 
methods for checking computational cores. 

If we are concerned with the verification features of 
specialized microprocessors of digital signal processing 
(DSP), then among them the wide combinatorial space of 
possible situations is worth highlighting. Often, these 
processors have a Harvard VLIW architecture with scalar 
and vector executive channels, hardware cycles, and multi-
channel memory. Their verification requires a huge 
amount of complex tests, which becomes the main problem 
of functional verification. However, the limiting factor is 
the time required to develop a complete test suite. 
Consequently, there is no question of writing all the tests 
manually. This determines the high relevance of creating 
new tools to check the correctness of the work of such 
structures. 

To increase the simulation speed, and, therefore, 
validation checks, each processor core and even some of its 
modules are verified in autonomous test environments 
(provided that the processor design is written taking into 
account the requirements of the verification decomposition 
task [5, 6]) since the simulation speed of individual parts of 
the processor is much higher. However, the task of creating 
a comprehensive set of test sequences for the processor 
core remains critical. Not all subsystems can be localized 
as a separate unit, and even where it is possible, errors in 
the inter-unit communication protocol can occur. Even if 
you do not go into the details of the implementation of the 
micro-architecture, the state space of the modern core is 
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astronomically huge. It is determined by the combination 
of the instruction set in the VLIW instruction, the dynamic 
combination of instructions and dependencies between 
them in the pipeline, the dynamics of memory accesses 
that can be executed some in the VLIW processor within 
the same instruction, external interruptions, and the state of 
the debugging subsystem. Test generators have long been 
serving as the main tool for covering computational kernel 
tests [7–9]. However, the amount of state space is such that 
one general-purpose generator will be excessively complex 
and with a rare emergence of critical situations, which will 
lead to an unacceptably long process of generating and 
running tests until the required coverage is achieved. 
Specialized test generators for individual subsystems or 
subsets of processor properties, for example, separate test 
generators for a set of software control commands, such as 
a memory system, an interrupt subsystem, allow you to 
create a large number of critical situations for the target 
subsystem and, accordingly, to achieve greater coverage. 
However, from the point of view of the system, specialized 
generators cover only a few localized subsets of the global 
state space, leaving large gaps between the subsets in this 
space. An example of an intermediate state not covered by 
specialized generators may be an interruption at the time of 
execution of a given combination of software control 
commands parallel to the execution of cache-addressing 
commands that conflict with each other when the cache 
line is accessed. A completely random flow of commands 
will create such a state through the years of modeling, and 
the directional specialized tests will not create this state at 
all since they use patterns or models that limit their 
behavior. 

This paper proposes a solution based on a system of 
combined specialized generators that allow you to organize 
hierarchical calls of different generators in the process of 
creating a test, and, thus, to expand the covered subsets of 
the global space of processor states. For example, a 
combination of a generator for software control (generation 
of exceptions) with a generator for a memory subsystem 
(exceptions under conditions of a long blocking of the 
pipeline). Such tests check the system as a whole since the 
simultaneous operation of many parts of the processor core 
creates critical situations, the probability of occurrence of 
which, with their directed verification, is very small. To 
generate them, it is necessary to take into account existing 
methods and approaches for testing various processor 
units. The generated test sequences allow you to check the 
interaction of various devices of the processor core in one 
test. 

II. MODEL OF RANDOM INSTRUCTION FLOW GENERATOR

The architecture of the model, allowing to solve the 
problem of generating random sequences, is shown in Fig. 
1. Tests for a DSP instruction set are sequences of
assembler instructions. Such testing allows you to verify 
these instructions for correctness from a behavioral point 
of view by testing random input data. For each instruction, 
the random data are the initial state of the used registers 
(both input and output), the numbers of these registers, the 
state, and addresses of memory cells in formats that require 
transfers. The generated program is designed to run on the 

RTL model (register transfer level) and the simulator. To 
use such a generator when verifying another 
microprocessor, minimal modification of the program is 
necessary, namely, to change the configuration file 
containing assembly instruction mnemonics and their 
formats. 

Fig. 1. Random instruction generator architecture 

The generation of test data includes the random 
selection of the instruction being tested from the list 
obtained from the configuration file, the choice of a format 
that is possible for this instruction; selection of registers for 
instructions, depending on the format of transfers; 
initialization of the state register. For a given instruction 
and parameters, a reference value is calculated. When 
initializing the values of 64-bit and 128-bit registers, 
intermediate transfers are used through two 32-bit 
registers, therefore they are reserved and are not used as 
sources or receivers of computational commands and 
transfers. 

There are two possible scenarios for using this 
generator model. 

In the first scenario, the test consists of several subtests 
that are written to the PRAM memory of the processor. 
Each subtest consists of initializing initial data (registers 
and memory), executing one test command, checking the 
result and writing the result of the execution to memory. 
By default, the program generates tests for the first work 
scenario. 

In the second scenario, the test consists of initializing 
the register file, address registers and the corresponding 
memory cells with initial arbitrary values and executing a 
specified number of arbitrary instructions. The number of 
generated instructions is limited to 4000. It supports the 
ability to set the proportion of basic instructions and, 
accordingly, extended. The result of the test is the state of 
the register file. The correctness of the test is checked by 
comparing the architectural state of the RTL and the 
reference processor model. 

A feature of this generator is the ability to create VLIW 
packages containing vector and scalar instructions. The 
generation of packets of a given length and random 
(limited by the maximum) length is supported. The 
instructions fall into one package, taking into account the 
limitation of the number of commands of this type that can 
be executed within one VLIW package. 
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III. MODEL OF CONTROL FLOW GENERATOR

When verifying the DSP processor control unit, one 
should take into account the peculiarities of its 
architecture. The main object of testing is the 
microprocessor pipeline. Basically, situations are checked 
that lead to various locks. Within the framework of the 
generator model under consideration, there is a need to 
cover the blocking space caused by software transitions, 
subroutines, hardware cycles, and exceptions; as well as 
locks caused by data dependencies between successive 
instructions. 

Fig. 2. Block diagram of control flow generator 

The structure allowing to solve this problem is shown 
in Fig. 2. The generator control module sets the general test 
generation rules described in the configuration file. They 
arrive at the input of generators of instructions and data, 
which carry out the formation of sequences consisting of 
executable code, the connections between them; and the 
creation of dependent and independent operands for 
instructions, respectively. To calculate the values of 
registers and memory, the resulting code is run on the 
functional model, in addition to providing the possibility of 
obtaining the current state of the system under test as a 
whole. The request manager is responsible for processing 
requests for a functional model to the memory for 
instructions and data. 

With the help of such a generator it is possible to 
generate tests of the form shown in fig. 3, where program 
conditional and unconditional jumps are available for 
relative (j-commands) and absolute (b-commands) 
addresses with delay slots, as well as preserving the return 
address; subroutine call, including calls from the 
subroutine (except recursion); nested hardware cycles [10]. 

The main components of the section with transitions 
are sequences of two types: seq_n, seq_subroutine_n. Seq 
is a piece of code consisting of random instructions 
connected by conditional or unconditional jumps. 
Seq_subroutine - routines with their own stack. Transitions 
are generated with both positive and negative offset. 

The subroutine call is implemented by passing the 
return address, as well as arguments through registers to a 
function with further writing to memory (common stack). 
A pointer to the top of the stack is placed in memory at a 
known address, and this address is generated randomly, 

taking into account the limitations of the microprocessor 
memory card. When writing to memory occurs, the pointer 
is incremented; when retrieved, it is decremented. After 
executing the function body, the address is read from the 
stack to the register, then jump to this address takes place. 
It is possible to call subroutines from other subroutines, 
there are limitations from looping, taking into account 
possible indirect or direct recursion. The number of 
subroutine calls is limited by the size of the stack. 

Fig. 3. Test structure 

Generation of software and hardware cycles is 
implemented. Program cycles are made using conditional 
and unconditional jumps. The depth of the cycles, as well 
as the number of subroutine calls, is specified in the 
configuration file. However, it should be noted that the 
depth of hardware cycles is limited by hardware, therefore, 
when generating cycles in subroutines, their nesting before 
this is taken into account. 

A distinctive feature of this generator is the ability to 
create exception handlers whose addresses are placed in a 
special register. In addition, three types of exceptions are 
generated: 

1) UI (Unknown Instruction) - unknown instruction;

2) BA (Bad Address) - wrong address;

3) SYSCALL - system calls.

The first type of exceptions is created with the help of 
various jumps to addresses with nonexistent instructions, 
as well as direct recording in the register of exceptions. 

The second type is generated by accessing the PRAM 
memory at addresses that are not allowed by the DSP 
processor or by Scatter-Gather accessing in a cache a 
single address that does not belong to the PRAM memory 
range. 

In the example above, a part of the generated test is 
presented, consisting of one sequence of the seq type, in 
which there are two calls to the subroutine 
seq_subroutine_1. In the seq_subroutine_1 subroutine, the 
return address is first saved, then the stack pointer is 
shifted up 4 units, after which the subprogram 
seq_subroutine_2 is called in the nested loop. Commands 
are separated by randomly generated instructions. At the 
end of seq_subroutine_0, the return address to register 31 
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is read, the pointer to the top of the stack is shifted down 4 
units and a transition occurs at the address in register 31.  

Example: 

seq_subroutine _1:   seq _0: 
    stl r31, (r0)  subl r22, r12, r15 
    addl 4, r0, r0       addl r22, r17, r19 
    do 4 llsub_11_end bs seq_subroutine _1 
    xor r12, r1, r3  bs seq_subroutine _1 
    minl r7.l, r4.l, r6.l  stl r0, (r=0x1200000) 
     do 6, llsub_12_end j test_stop   
    bs seq_subroutine _2 

llsub_12_end: 
    subl 4, r0, r0  
    llsub_11_end:   
    ldl (r0), r31  
  b r31 

Despite the presence of a functional model in the 
generator, to test the microprocessor core under test, the 
subjects of the discrepancy between the behavior of the 
processor under test and the reference model mainly use 
the mode of comparison the RTL and simulator (TLM 
model). The advantage of this approach is that the 
verification of the correctness of the behavior of the 
components is performed automatically. 

IV. MODEL OF CACHE HIERARCHY GENERATOR

The construction of tests with this generator is carried 
out by constructing a graph model of the cache memory 
hierarchy, the vertices of which are cache states (Fig. 4), 
and the edges are state transitions (instructions written in a 
metalanguage). 

Fig. 4. Graph model of cache memory hierarchy 

The metalanguage makes it possible to work with the 
microprocessor's memory at a more abstract level, 
decoupling the tests from a specific assembler, which 
allows you to transfer tests to verify processors with 
another architecture. It contains read functions and write 
functions. Vector-block work with memory is provided. A 
special translator has been developed for converting 
metalanguage into assembler commands, which supports 
no more than 16 vector-block memory accesses. 

The following transitions are possible between the 
vertices: 

1) hit(Cache L, int mode) – hit in the cache L by
reading or writing. The mode parameter determines which 
address will be used: if it is 0, a random cached address is 
used; in the event that mode is 1, the address of the last 
executed command is used. 

2) miss(Cache L) – miss by reading or writing in the
cache L. 

3) parallel_hit_miss(Cache L, int _mode=0) – parallel
operations of hit and miss on reading or writing in the L 
cache on several ports. Parameter mode works as in the 
case of a hit. 

4) replace(Cache L) – evicting the line used in the last
executed instruction in the L cache. 

5) next_line(Cache L) – reading or writing in two
adjacent lines from the line used in the last executed 
command, but there is no access to the line itself. 

6) next_way(Cache L) – reading or writing in a random
associative way for the string used in the last executed 
command, while there is no access to the line itself. 

7) nop() – nop instruction.

8) gather_scatter(int addr_banks_mode, int command)
– addresses are sent to one bank or to random banks with
the ability to set the type (read /write) of command. 

9) reset_mem_model() – graph memory model reset
function.  

At generation of all transitions, the address, the type of 
circulation, and the size of the transaction are set 
randomly. An example of a graph for a row of one cache 
and two associative paths is shown in Figure 5. 

Fig. 5. Graph model for a single cache line 

According to the description given in the configuration 
file (Fig. 6), a graph model is built. Each transition in the 
graph is a separate test. First, a preamble is generated, 
consisting of sequences of metalanguage commands that 
bring the cache memory system to the desired state; 
followed by a block of memory dump; then the instruction 
responsible for the transition; the block of checking the 
memory dump with the reference model. 
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Fig. 6. Cache hierarchy description 

Possible critical situations for the cache (without taking 
into account the coherence) created by the generator in 
question: chains read-write, write-write-read-read; 
accessing by addresses after the data cached by them has 
been evicted;  eviction of a line with further reading from 
it; writing or reading data crossing the edge of one line in 
one associative way to suppress two lines in it at once; 
writing or reading data crossing the edge of one associative 
way in order to evict two lines at once in two different 
ways. Generating invalidation commands allows creating 
additional load on the cache system. In the future, it is 
intended to impose all this on the coherence mechanism. 

To generate tests for a bunch of L1 and L2 caches, we 
need to additionally specify the following points in the 
configuration file: whether L1 is inclusive; how the 
displacement from L1 and the displacement directly from 
L1 and L2 takes place; how the miss in L0 with the 
eviction in L1 takes place. 

A distinctive feature of the generator is the support for 
the generation of test scenarios for multi-channel access 
mode in a cache memory. The default option is a preamble 
consisting of a sequence of commands of the metalanguage 
on one channel with a simultaneous transition to different 
states on all valid channels and checking data by 
comparing with the reference model. Also, random 
instructions for accessing external and internal memory 
have been added to test generation. 

V. EXTERNAL INTERRUPT GENERATION 

An external interrupt, generally coming 
asynchronously to the command execution flow, should 
result in the exit into the handler, its execution, and return 
to the execution process of the main control flow in an 
initial state of the pipeline. External generation of 
interrupts for the RTL model is easy to organize. However, 
there are two problems. 

The first problem is to combinatorically go through the 
states of the core at the moment the interrupt arrives. For 
these purposes, the program generated by all the generators 
and their combinations described above is used as the 
victim program. 

The second problem is the validation of the entrance to 
the handler and returns from it. The classic method of 
verification is the comparison of traces and states at the 
control points of the RTL and TLM models. However, it is 
extremely difficult to implement the submission of 
interruptions at the same time points from the point of view 

of the pipeline of models of different levels of abstraction. 
It would be possible to achieve tact precision TLM-model 
and use information about the internal state of the pipeline 
to generate an interrupt event, however, this approach 
requires too much labor. At this stage, it was decided to 
use a simplified comparison mechanism. The fact of the 
exit to the handler and the correctness of its operation is 
checked by a separate monitor (no coincidence of the 
traces is required). In turn, the traces are compared for all 
instructions, except those that are executed in the interrupt 
handler. The similarity of the main program is provided by 
the context recovery procedure when exiting the handler. 

VI. GENERATOR INTEGRATION

To create more complex tests, the integration of 
generators into each other is necessary, since the 
interaction of different microprocessor devices, including 
the DSP processor, generates a huge variety of possible 
situations. 

Using a random instruction generator, VLIW packets 
are created that are randomly placed in the body of 
subroutines, loops, exception handlers, and inserted 
between program jumps and memory access commands. 

The combination of a generator for control flow with a 
generator for a memory subsystem allows creating critical 
situations for the microprocessor. For example, exceptions 
under long-term pipeline blocking conditions, such as 
locks associated with memory accesses, which, in turn, are 
divided into arbitration locks caused by conflicts when 
accessing memory blocks, and locks caused by delayed 
response from the memory (space for cache misses, as well 
as non-cacheable accesses to external memory). 

To ensure the combinability of generators in the 
generated code that checks a particular subsystem, special 
sections are provided into which integration of the code of 
the stream of arithmetic commands or memory access tests 
of orthogonal in terms of resources used to the test 
program of the upper level is allowed. 

VII. CONCLUSION

The paper analyzes the problems that arise when 
automating the generation of pseudo-random tests for 
computational cores. Ways to solve them are described 
with the formation of recommendations for optimizing the 
corresponding architectural implementations by the 
example of developing specialized generators, such as a 
flow of random instructions, control flow tests, cache 
hierarchy tests, and external interrupt tests. The developed 
generators were applied when checking the correctness of 
the operation of the VLIW DSP processor with the 
Elcore50 architecture. An approach to combining them 
was also proposed, which allowed to test the interaction of 
different processor units and identify several critical errors 
in the operation of the DSP core. 

After a year, using the described models, a test 
generation system was created for the developed processor 
core with the VLIW architecture, solving the complex task 
of checking all core subsystems and their interaction by 
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combining the already existing and newly developed 
specialized generators for separate subsystems of the core. 
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