
Selected Articles of MES conference, 2019, issue 2 © IPPM RAS

DOI 10.31114/2078-7707-2019-2-2-7

System of Combined Specialized Test Generators for the New
Generation of VLIW DSP Processors with Elcore50 Architecture

A.V. Garashchenko1,2, A.V. Nikolaev1, F.M. Putrya1, S.S. Sardaryan2
1Open Joint-Stock Company Research & Development Center «ELVEES», Zelenograd, Moscow

2National Research University of Electronic Technology (MIET), Zelenograd, Moscow

ant.gar1@mail.ru

Abstract — In connection with the architectural
complexity of modern multi-core structures, more than 60%
of the design resources are spent on verification during the
development of the processor. Automatic generation of tests
is often used to increase test coverage and reduce overall test
time. Therefore, the creation of verification test generators to
verify the correct operation of microprocessors is becoming
increasingly important.

This paper describes the technique of development of the
several tests generators used for microprocessor verification.
The first one is designed for VLIW package generating. The
second one is for the verification of the control flow. With the
help of it sequences of assembler instructions are created to
check the pipeline. Software and hardware cycles,
subprogram calls, conditional and unconditional conversions
are possible. The third generator is aimed at checking the
cache memory of processor. It is based on the graph model of
the memory subsystem built by its description.

In the suggested approach, source code of the tests is
constructed by using combinatorial techniques, that is all
possible combinations of instructions, situations, and
dependencies are sorted taking into account the constraints
that direct the tests to check certain situations and also
exclude the possibility of generating infinite cycles. The
generated test sequences allow for various tests.

To create more complex tests possible integration of
generators into each other is considered, since the interaction
of different devices of the processor generates a large
number of critical situations. The proposed approach makes
it possible to improve the efficiency of microprocessor
testing.

Keywords — verification of processors, wide command
word, memory subsystem, test generation, coverage.

I. INTRODUCTION

Due to the architectural complexity of modern multi-
core processors used in developing systems on a chip
(SoC), more than sixty percent of design resources are
spent on their verification. This is because the high
combinatorial complexity of checking the correctness of
the work of both single cores and the system as a whole. In
addition, there is a tendency of SoC complication due to
the increase of heterogeneity associated with the need to

increase the speed of performing certain classes of tasks.
Such computing systems consist of general-purpose and
specialized computing cores. That is, the task is to check
the implementations of different architectures of the
computational cores that are part of the designed SoC,
which may differ not only by the command system, but
also by the way the commands are assembled into a VLIW
package (VLIW - Very Long Instruction Word), its width,
the organization of register files, caches and much more.
The computational complexity of modern formal
verification algorithms limits the scope of their use by
small blocks (such as ALU or single elements of the
memory subsystem) or separate processor properties that
are easily localized, which sharply limits the use of formal
methods for tests of the full processor core level [1-4]. In
this way, dynamic verification is still one of the main
methods for checking computational cores.

If we are concerned with the verification features of
specialized microprocessors of digital signal processing
(DSP), then among them the wide combinatorial space of
possible situations is worth highlighting. Often, these
processors have a Harvard VLIW architecture with scalar
and vector executive channels, hardware cycles, and multi-
channel memory. Their verification requires a huge
amount of complex tests, which becomes the main problem
of functional verification. However, the limiting factor is
the time required to develop a complete test suite.
Consequently, there is no question of writing all the tests
manually. This determines the high relevance of creating
new tools to check the correctness of the work of such
structures.

To increase the simulation speed, and, therefore,
validation checks, each processor core and even some of its
modules are verified in autonomous test environments
(provided that the processor design is written taking into
account the requirements of the verification decomposition
task [5, 6]) since the simulation speed of individual parts of
the processor is much higher. However, the task of creating
a comprehensive set of test sequences for the processor
core remains critical. Not all subsystems can be localized
as a separate unit, and even where it is possible, errors in
the inter-unit communication protocol can occur. Even if
you do not go into the details of the implementation of the
micro-architecture, the state space of the modern core is

2

astronomically huge. It is determined by the combination
of the instruction set in the VLIW instruction, the dynamic
combination of instructions and dependencies between
them in the pipeline, the dynamics of memory accesses
that can be executed some in the VLIW processor within
the same instruction, external interruptions, and the state of
the debugging subsystem. Test generators have long been
serving as the main tool for covering computational kernel
tests [7–9]. However, the amount of state space is such that
one general-purpose generator will be excessively complex
and with a rare emergence of critical situations, which will
lead to an unacceptably long process of generating and
running tests until the required coverage is achieved.
Specialized test generators for individual subsystems or
subsets of processor properties, for example, separate test
generators for a set of software control commands, such as
a memory system, an interrupt subsystem, allow you to
create a large number of critical situations for the target
subsystem and, accordingly, to achieve greater coverage.
However, from the point of view of the system, specialized
generators cover only a few localized subsets of the global
state space, leaving large gaps between the subsets in this
space. An example of an intermediate state not covered by
specialized generators may be an interruption at the time of
execution of a given combination of software control
commands parallel to the execution of cache-addressing
commands that conflict with each other when the cache
line is accessed. A completely random flow of commands
will create such a state through the years of modeling, and
the directional specialized tests will not create this state at
all since they use patterns or models that limit their
behavior.

This paper proposes a solution based on a system of
combined specialized generators that allow you to organize
hierarchical calls of different generators in the process of
creating a test, and, thus, to expand the covered subsets of
the global space of processor states. For example, a
combination of a generator for software control (generation
of exceptions) with a generator for a memory subsystem
(exceptions under conditions of a long blocking of the
pipeline). Such tests check the system as a whole since the
simultaneous operation of many parts of the processor core
creates critical situations, the probability of occurrence of
which, with their directed verification, is very small. To
generate them, it is necessary to take into account existing
methods and approaches for testing various processor
units. The generated test sequences allow you to check the
interaction of various devices of the processor core in one
test.

II. MODEL OF RANDOM INSTRUCTION FLOW GENERATOR

The architecture of the model, allowing to solve the
problem of generating random sequences, is shown in Fig.
1. Tests for a DSP instruction set are sequences of
assembler instructions. Such testing allows you to verify
these instructions for correctness from a behavioral point
of view by testing random input data. For each instruction,
the random data are the initial state of the used registers
(both input and output), the numbers of these registers, the
state, and addresses of memory cells in formats that require
transfers. The generated program is designed to run on the

RTL model (register transfer level) and the simulator. To
use such a generator when verifying another
microprocessor, minimal modification of the program is
necessary, namely, to change the configuration file
containing assembly instruction mnemonics and their
formats.

Fig. 1. Random instruction generator architecture

The generation of test data includes the random
selection of the instruction being tested from the list
obtained from the configuration file, the choice of a format
that is possible for this instruction; selection of registers for
instructions, depending on the format of transfers;
initialization of the state register. For a given instruction
and parameters, a reference value is calculated. When
initializing the values of 64-bit and 128-bit registers,
intermediate transfers are used through two 32-bit
registers, therefore they are reserved and are not used as
sources or receivers of computational commands and
transfers.

There are two possible scenarios for using this
generator model.

In the first scenario, the test consists of several subtests
that are written to the PRAM memory of the processor.
Each subtest consists of initializing initial data (registers
and memory), executing one test command, checking the
result and writing the result of the execution to memory.
By default, the program generates tests for the first work
scenario.

In the second scenario, the test consists of initializing
the register file, address registers and the corresponding
memory cells with initial arbitrary values and executing a
specified number of arbitrary instructions. The number of
generated instructions is limited to 4000. It supports the
ability to set the proportion of basic instructions and,
accordingly, extended. The result of the test is the state of
the register file. The correctness of the test is checked by
comparing the architectural state of the RTL and the
reference processor model.

A feature of this generator is the ability to create VLIW
packages containing vector and scalar instructions. The
generation of packets of a given length and random
(limited by the maximum) length is supported. The
instructions fall into one package, taking into account the
limitation of the number of commands of this type that can
be executed within one VLIW package.

3

III. MODEL OF CONTROL FLOW GENERATOR

When verifying the DSP processor control unit, one
should take into account the peculiarities of its
architecture. The main object of testing is the
microprocessor pipeline. Basically, situations are checked
that lead to various locks. Within the framework of the
generator model under consideration, there is a need to
cover the blocking space caused by software transitions,
subroutines, hardware cycles, and exceptions; as well as
locks caused by data dependencies between successive
instructions.

Fig. 2. Block diagram of control flow generator

The structure allowing to solve this problem is shown
in Fig. 2. The generator control module sets the general test
generation rules described in the configuration file. They
arrive at the input of generators of instructions and data,
which carry out the formation of sequences consisting of
executable code, the connections between them; and the
creation of dependent and independent operands for
instructions, respectively. To calculate the values of
registers and memory, the resulting code is run on the
functional model, in addition to providing the possibility of
obtaining the current state of the system under test as a
whole. The request manager is responsible for processing
requests for a functional model to the memory for
instructions and data.

With the help of such a generator it is possible to
generate tests of the form shown in fig. 3, where program
conditional and unconditional jumps are available for
relative (j-commands) and absolute (b-commands)
addresses with delay slots, as well as preserving the return
address; subroutine call, including calls from the
subroutine (except recursion); nested hardware cycles [10].

The main components of the section with transitions
are sequences of two types: seq_n, seq_subroutine_n. Seq
is a piece of code consisting of random instructions
connected by conditional or unconditional jumps.
Seq_subroutine - routines with their own stack. Transitions
are generated with both positive and negative offset.

The subroutine call is implemented by passing the
return address, as well as arguments through registers to a
function with further writing to memory (common stack).
A pointer to the top of the stack is placed in memory at a
known address, and this address is generated randomly,

taking into account the limitations of the microprocessor
memory card. When writing to memory occurs, the pointer
is incremented; when retrieved, it is decremented. After
executing the function body, the address is read from the
stack to the register, then jump to this address takes place.
It is possible to call subroutines from other subroutines,
there are limitations from looping, taking into account
possible indirect or direct recursion. The number of
subroutine calls is limited by the size of the stack.

Fig. 3. Test structure

Generation of software and hardware cycles is
implemented. Program cycles are made using conditional
and unconditional jumps. The depth of the cycles, as well
as the number of subroutine calls, is specified in the
configuration file. However, it should be noted that the
depth of hardware cycles is limited by hardware, therefore,
when generating cycles in subroutines, their nesting before
this is taken into account.

A distinctive feature of this generator is the ability to
create exception handlers whose addresses are placed in a
special register. In addition, three types of exceptions are
generated:

1) UI (Unknown Instruction) - unknown instruction;

2) BA (Bad Address) - wrong address;

3) SYSCALL - system calls.

The first type of exceptions is created with the help of
various jumps to addresses with nonexistent instructions,
as well as direct recording in the register of exceptions.

The second type is generated by accessing the PRAM
memory at addresses that are not allowed by the DSP
processor or by Scatter-Gather accessing in a cache a
single address that does not belong to the PRAM memory
range.

In the example above, a part of the generated test is
presented, consisting of one sequence of the seq type, in
which there are two calls to the subroutine
seq_subroutine_1. In the seq_subroutine_1 subroutine, the
return address is first saved, then the stack pointer is
shifted up 4 units, after which the subprogram
seq_subroutine_2 is called in the nested loop. Commands
are separated by randomly generated instructions. At the
end of seq_subroutine_0, the return address to register 31

4

is read, the pointer to the top of the stack is shifted down 4
units and a transition occurs at the address in register 31.

Example:

seq_subroutine _1: seq _0:
 stl r31, (r0) subl r22, r12, r15
 addl 4, r0, r0 addl r22, r17, r19
 do 4 llsub_11_end bs seq_subroutine _1
 xor r12, r1, r3 bs seq_subroutine _1
 minl r7.l, r4.l, r6.l stl r0, (r=0x1200000)
 do 6, llsub_12_end j test_stop
 bs seq_subroutine _2

llsub_12_end:
 subl 4, r0, r0
 llsub_11_end:
 ldl (r0), r31
 b r31

Despite the presence of a functional model in the
generator, to test the microprocessor core under test, the
subjects of the discrepancy between the behavior of the
processor under test and the reference model mainly use
the mode of comparison the RTL and simulator (TLM
model). The advantage of this approach is that the
verification of the correctness of the behavior of the
components is performed automatically.

IV. MODEL OF CACHE HIERARCHY GENERATOR

The construction of tests with this generator is carried
out by constructing a graph model of the cache memory
hierarchy, the vertices of which are cache states (Fig. 4),
and the edges are state transitions (instructions written in a
metalanguage).

Fig. 4. Graph model of cache memory hierarchy

The metalanguage makes it possible to work with the
microprocessor's memory at a more abstract level,
decoupling the tests from a specific assembler, which
allows you to transfer tests to verify processors with
another architecture. It contains read functions and write
functions. Vector-block work with memory is provided. A
special translator has been developed for converting
metalanguage into assembler commands, which supports
no more than 16 vector-block memory accesses.

The following transitions are possible between the
vertices:

1) hit(Cache L, int mode) – hit in the cache L by
reading or writing. The mode parameter determines which
address will be used: if it is 0, a random cached address is
used; in the event that mode is 1, the address of the last
executed command is used.

2) miss(Cache L) – miss by reading or writing in the
cache L.

3) parallel_hit_miss(Cache L, int _mode=0) – parallel
operations of hit and miss on reading or writing in the L
cache on several ports. Parameter mode works as in the
case of a hit.

4) replace(Cache L) – evicting the line used in the last
executed instruction in the L cache.

5) next_line(Cache L) – reading or writing in two
adjacent lines from the line used in the last executed
command, but there is no access to the line itself.

6) next_way(Cache L) – reading or writing in a random
associative way for the string used in the last executed
command, while there is no access to the line itself.

7) nop() – nop instruction.

8) gather_scatter(int addr_banks_mode, int command)
– addresses are sent to one bank or to random banks with
the ability to set the type (read /write) of command.

9) reset_mem_model() – graph memory model reset
function.

At generation of all transitions, the address, the type of
circulation, and the size of the transaction are set
randomly. An example of a graph for a row of one cache
and two associative paths is shown in Figure 5.

Fig. 5. Graph model for a single cache line

According to the description given in the configuration
file (Fig. 6), a graph model is built. Each transition in the
graph is a separate test. First, a preamble is generated,
consisting of sequences of metalanguage commands that
bring the cache memory system to the desired state;
followed by a block of memory dump; then the instruction
responsible for the transition; the block of checking the
memory dump with the reference model.

5

Fig. 6. Cache hierarchy description

Possible critical situations for the cache (without taking
into account the coherence) created by the generator in
question: chains read-write, write-write-read-read;
accessing by addresses after the data cached by them has
been evicted; eviction of a line with further reading from
it; writing or reading data crossing the edge of one line in
one associative way to suppress two lines in it at once;
writing or reading data crossing the edge of one associative
way in order to evict two lines at once in two different
ways. Generating invalidation commands allows creating
additional load on the cache system. In the future, it is
intended to impose all this on the coherence mechanism.

To generate tests for a bunch of L1 and L2 caches, we
need to additionally specify the following points in the
configuration file: whether L1 is inclusive; how the
displacement from L1 and the displacement directly from
L1 and L2 takes place; how the miss in L0 with the
eviction in L1 takes place.

A distinctive feature of the generator is the support for
the generation of test scenarios for multi-channel access
mode in a cache memory. The default option is a preamble
consisting of a sequence of commands of the metalanguage
on one channel with a simultaneous transition to different
states on all valid channels and checking data by
comparing with the reference model. Also, random
instructions for accessing external and internal memory
have been added to test generation.

V. EXTERNAL INTERRUPT GENERATION

An external interrupt, generally coming
asynchronously to the command execution flow, should
result in the exit into the handler, its execution, and return
to the execution process of the main control flow in an
initial state of the pipeline. External generation of
interrupts for the RTL model is easy to organize. However,
there are two problems.

The first problem is to combinatorically go through the
states of the core at the moment the interrupt arrives. For
these purposes, the program generated by all the generators
and their combinations described above is used as the
victim program.

The second problem is the validation of the entrance to
the handler and returns from it. The classic method of
verification is the comparison of traces and states at the
control points of the RTL and TLM models. However, it is
extremely difficult to implement the submission of
interruptions at the same time points from the point of view

of the pipeline of models of different levels of abstraction.
It would be possible to achieve tact precision TLM-model
and use information about the internal state of the pipeline
to generate an interrupt event, however, this approach
requires too much labor. At this stage, it was decided to
use a simplified comparison mechanism. The fact of the
exit to the handler and the correctness of its operation is
checked by a separate monitor (no coincidence of the
traces is required). In turn, the traces are compared for all
instructions, except those that are executed in the interrupt
handler. The similarity of the main program is provided by
the context recovery procedure when exiting the handler.

VI. GENERATOR INTEGRATION

To create more complex tests, the integration of
generators into each other is necessary, since the
interaction of different microprocessor devices, including
the DSP processor, generates a huge variety of possible
situations.

Using a random instruction generator, VLIW packets
are created that are randomly placed in the body of
subroutines, loops, exception handlers, and inserted
between program jumps and memory access commands.

The combination of a generator for control flow with a
generator for a memory subsystem allows creating critical
situations for the microprocessor. For example, exceptions
under long-term pipeline blocking conditions, such as
locks associated with memory accesses, which, in turn, are
divided into arbitration locks caused by conflicts when
accessing memory blocks, and locks caused by delayed
response from the memory (space for cache misses, as well
as non-cacheable accesses to external memory).

To ensure the combinability of generators in the
generated code that checks a particular subsystem, special
sections are provided into which integration of the code of
the stream of arithmetic commands or memory access tests
of orthogonal in terms of resources used to the test
program of the upper level is allowed.

VII. CONCLUSION

The paper analyzes the problems that arise when
automating the generation of pseudo-random tests for
computational cores. Ways to solve them are described
with the formation of recommendations for optimizing the
corresponding architectural implementations by the
example of developing specialized generators, such as a
flow of random instructions, control flow tests, cache
hierarchy tests, and external interrupt tests. The developed
generators were applied when checking the correctness of
the operation of the VLIW DSP processor with the
Elcore50 architecture. An approach to combining them
was also proposed, which allowed to test the interaction of
different processor units and identify several critical errors
in the operation of the DSP core.

After a year, using the described models, a test
generation system was created for the developed processor
core with the VLIW architecture, solving the complex task
of checking all core subsystems and their interaction by

 6

combining the already existing and newly developed
specialized generators for separate subsystems of the core.

REFERENCES

[1] Vigyan Singhal, Starting Formal Right from Formal Test
Plannin, Oski Technology, Verification Academy at DAC-
2015. S. 1–10.

[2] David M. Russinoff. Formal Verification of Floating-Point
RTL at AMD Using the ACL2 Theorem Prover. In
Computer-Aided Reasoning: ACL2 Case Studies, chapter
13. Kluwer Academic Publishers. 2000. S. 1–8.

[3] Kamkin A.S., Petrochenkov M.V. Sistema podderzhki
verifikacii realizacij protokolov kogerentnosti s
ispol'zovaniem formal'nyh metodov (System for supporting
the verification of coherence protocol implementations
using formal methods) // Voprosy radioehlektroniki. 2014.
T. 5. № 2. S. 5–17.

[4] Karpov YU.G. Model Checking. Verifikaciya parallel'nyh i
raspredelennyh programmnyh sistem (Verification of
parallel and distributed software systems) SPb.: BHV-
Peterburg, 2010. 560 s.

[5] Bening, Lionel, Foster, Harry D. Principles of Verifiable
RTL Design: A functional coding style supporting
verification processes in Verilog Hardcover, Springer –
May 31, 2001 g., S. 12–17.

[6] Greene B. and McDaniel M. The Cortex-A15 Verification
Story // DVClub, Austin, december 7, 2011 g., S. 1–7.

[7] Kamkin A.S., Kocynyak A.M., Smolov S.A., Tatarnikov
A.D., CHupilko M.M., Sortov A.A.  Sredstva funkcionalnoj
verifikacii mikroprocessorov (Tools for Functional
Verification of  Microprocessors) / Sb. trudov Instituta
sistemnogo programmirovaniya RAN T. 26. 2014 S. 149–
206.

[8] Meshkov A.N., Ryzhov M.P., SHmelev V.A. Razvitie
sredstv verifikacii mikroprocessora «Elbrus-2S» (The
development of the verification tools of the "Elbrus-2s"
microprocessor) // Voprosy radioehlektroniki. 2014. T. 4.
№ 3. S. 5–17.

[9] Putrya F.M. Primenenie generatorov sluchajnyh programm i
sluchajnyh fonovyh vozdejstvij pri funkcional'noj
verifikacii mnogoyadernyh sistem na kristalle (Application
of generators of random programs and random background
influences in the functional verification of multi-core
systems on a chip): materialy sed'moj mezhdunarodnoj
konferencii "Avtomatizaciya proektirovaniya diskretnyh
sistem". 16–17 noyabrya 2010 g., Minsk, S. 234–241.

[10] Garashchenko A.V, Gagarina L.G., Fedotova E.L.,
Vysochkin A.V., Zajcev V.V. Razrabotka generatora
verifikacionnyh testov dlya mnogoyadernyh struktur
(Development of a verification test generator for multi-core
structures) // Informatizaciya i svyaz'. 2017. №4. S. 20–25.

7

