
Selected Articles of MES conference, 2019, issue 2 © IPPM RAS

DOI 10.31114/2078-7707-2019-2-12-17

Multicore Processor Models Verification in the Early Stages
N.A. Grevtsev1,2, P.A. Chibisov1

1Scientific Research Institute of System Analysis (SRISA RAS), chibisov@cs.niisi.ras.ru
2MIPT, ngrevcev.cs.niisi.ras.ru

Abstract — In the paper the early stage of verification
technology for multicore processor models testing is
proposed. We demonstrate the applicability of the single core
verification method extension where creating new multicore
test generator is not required. The solution scheme deals
with the adaptation method of some available single core
stochastic testing approaches to a fully functional multicore
testing tool.

The proposed technique has been successfully applied to test
RTL model of dual-core microprocessor with SMP
developed in SRISA. The discussed approach was initially
considered to be the first stage of RTL model testing, but the
possibilities of the approach are also of interest for testing
the model at the later stages of its design and functional
maturity.

The testing process begins by creating simple random tests
that check the MOESI coherence protocol. A new advanced
random testing method based on the usage of proposed
interleaved memory structures is developed to increase the
probability of finding rare and hard to detect bugs in the
memory subsystem.

The great advantage of the proposed memory allocation
structure is that both cores gain access to the same cache-line
simultaneously for read and write. Despite this accessibility,
the methodology avoids losses of data consistency due to
cores access to different bytes. Furthermore, each common
area that is allowed to write to more than one core will
contain deterministic values at every time.

The proposed approach aims to detect failures in cache
coherence protocol, memory subsystem and memory buffers.
Also, this testing system helps to find machine state errors
that lead to deadlock.

Keywords — functional verification, multicore, stochastic
testing, pseudorandom tests generation, memory subsystem,
SMP, MOESI, cache coherence, pre-silicon verification.

I. INTRODUCTION

The verification strategy of the Register Transfer Level
(RTL) model of a multi-core microprocessor, considered in
this paper, is to carry out the most complete testing of the
project at the early stages of the design cycle using ready-
made testing tools for single-core microprocessors. The
purpose of the system approach is to verify the inter-core
interactions between the individual blocks of the memory
subsystem and the blocks themselves on a system-wide
basis directly in the process of developing the model. It
should be emphasized that the generator of single-core test

programs does not require significant corrections and
improvements.

Multi-core architecture of the microprocessor with
symmetric memory access (SMP) allows to use resources
of additional processor cores for parallelization of
resource-intensive calculations or simultaneous multiple
tasks performance. A common system controller in such a
system provides access to RAM for each microprocessor
core, as well as the connection of peripheral devices. An
example of a block diagram of a multi-core system on a
chip with SMP memory access architecture is shown in
figure 1.

System controller

I/O Snoop Directory

AXI

Snoop
request

CPU
request

Cache-to-cache
interconnect

Core 0

L1
Dcache

L1
Icache

MOESI Coherense protocol

L2 Cache

MMU
CP0 TLB

Snoop
request

CPU
request

I/O Request Snoop response

Core 1

L1
Dcache

L1
Icache

MOESI Coherense protocol

L2 Cache

MMU
CP0TLB

Fig. 1. Multicore SMP architecture

The data coherence problem can arise when two or
more compute cores access the same data at the same time
if one or more of these accesses are written. Thus, the most
current data may be in the cache memory of one of the
cores and will not be available to other devices in the
system. This problem of data integrity preservation in
multi-core microprocessors is solved with coherence
protocol, according to which data synchronization between
processor cores and peripherals is provided.

In spite of the fact that it is recommended to avoid data
conflicts while writing concurrent programs, we consider it
essential to create random test cases with forced shared
data areas between threads intentionally to test the
interaction between cores in a shorter period of time. We
have the opportunity to apply well-established single core
verification techniques and solutions for fully functional
multicore models testing by template customization of
user-defined memory allocation.

12

The article continues studies [1], [2] of microprocessor
models stochastic verification. The following sections of
the article describe the proposed new approach to early
verification stages of multi-core microprocessor RTL
models. We put emphasis on the early design stage, as well
as the applicability of single-threaded testing tools.

II. SPECIAL ASPECTS OF MEMORY SUBSYSTEM

VERIFICATION

When designing new microprocessors, the study of
new microarchitectural solutions effects can be required.
For this purpose, a number of experimental models, which
evaluate the effectiveness of solutions on a set of key
criteria, such as the complexity of the implementation in
HDL-code, time costs for implementation, performance,
size of the occupied area on the chip, power consumption
are created. Different approaches to the development
require iterative experimental models creation to assess the
performance and productivity of decisions.

With each new change, the performance of the model
must be verified in a limited time. For example, the
development process has required an assessment of the
applicability of one of two options (inclusive and
exclusive) for interaction between first-level and second-
level cache memory. An inclusive organization assumes

information duplication in the L1 and L2 caches, while
exclusive cache memory assumes uniqueness of
information in the L1 and L2 caches. To assess the
optimality of such architectural decisions a test system is
needed, which includes architecture certification and
performance tests.

The article proposes a route of multi-core
microprocessor models testing on the early stages. It
allows to obtain a full-fledged multi-core testing tool by
adapting existing single-core testing tools. Directed
stochastic testing is one of the models testing methods at
the system level. In conditions of extremely limited time
frames and the lack of human resources, it is necessary to
test the developed RTL model of a multi-core
microprocessor without creating new testing tools aimed
solely at coherence protocol verification.

The memory subsystem of modern multi-core
microprocessors consists of multiple components on a
single chip: MMU, TLB, cache memory of all levels and
their controllers, data coherence support mechanisms,
system controller, data prefetch and reordering buffers.
The presence of many cores increases combinatorial
complexity of the memory subsystem validation.

Fig. 2. State transitions in MOESI cache coherence protocol, projected on two cores basis

13

The cache coherence protocol describes the state of one
cache line relative to a similar line in another core and does
not affect operations on other cache lines. The state of the
cache line is the state of the corresponding cache
controller. All states can be divided into stable and
transient. The stable states are defined by a subset of the
states: Modified, Owned, Exclusive, Shared, Invalid
(MOESI). Transitions from one stable state to another in
modern cache coherence protocols do not occur
instantaneously, but through transient states [3].

High complexity of the cache coherence protocol
verification problems is due to the fact that combinatorial
brute force search quickly leads to a state explosion. In [4],
it is said that the coherence protocol can be verified
separately according to its specification using the model
verification method (model-checking). Meanwhile, our
task is to check not only the design and implementation of
the selected cache coherence protocol but the
implementation of the entire memory subsystem in
conjunction with other microarchitectural improvements
mentioned above.

Figure 2 shows all possible transitions from the load-
store requests, for a cache block in MOESI cache
coherence protocol, projected on two cores bases.
However, there are many other memory subsystem blocks
which are used in the real system.

One of the methods of testing models at the system
level is the directed stochastic testing method, which is of
high effectiveness [2].

III. APPLICABILITY OF EXISTING TOOLS

Before developing a random test generator for testing
the memory subsystem of multi-core systems, it is
proposed to modify the existing testing tools and create
separate tests for each core, and then run them in parallel.

 Meanwhile, the responsibility for the correct memory
allocation between the cores lies on the developer of the
template.

When building a template, the memory distribution
between the cores is taken into account. Memory access
instructions are randomly selected within specified limits.
An example of a stochastic testing route for dual-core
system verification is shown in figure 3.

The advantages of the technique are:

• possibility to start testing immediately without
spending resources on developing a special
generator,

• scalability: it is easy to extend the approach for
any number of cores (2-16),

• ability to accurately define test scenarios with
different degrees of freedom,

• absence of necessity to modify the generation
process for different architectural solutions.

Nevertheless, this method has some limitations: it is
necessary to control memory distribution between the
cores by the template developer and control thread

synchronization. Also, the proposed method is aimed at
memory subsystem verification and does not affect the
atomic operations testing.

Fig. 3. Single core generator application diagram for
multicore verification

IV.TEST GENERATION PROCESS FOR MULTICORE

MICROPROCESSORS

This chapter describes the main stages of multi-core
memory subsystems verification, corresponding to
different levels of functional development of RTL-model
maturity.

A. Hand-written tests aimed at cache protocol
The testing process begins (starts) with the creation

simple (hand-written) tests in assembly language aimed at
checking the MOESI cache coherence protocol. These tests
check all transitions between MOESI states separately
(figure 2), formalize and verify the multicore
synchronization algorithms that will be used for further
testing. With the help of such tests, the mechanism of the
test correctness checking execution is debugged. For this
purpose, the system of ISS (Instruction Set Simulator) and
RTL-model logs comparison is used.

B. Hand-written tests with self-check
The root idea is that modification of independent

variables sharing the same cache line by different threads
(false sharing) results in computational performance
degradation. Even one byte modification leads to the whole
cache line replacement; therefore there may be situations
when parallel threads of user application are
unintentionally updating independent variables which are
located in the same cache line, interchangeably. In such
circumstances, a cache line update on one core leads to
cache line eviction on the other core (cores) [5].

14

In publications [6] and [7], false sharing detection
methods are investigated. Scalability for parallel threads of
execution in an SMP system when there are many data
conflicts related to the same cache line usage is also
analyzed. Finally, it is recommended to avoid data
conflicts described above while writing concurrent
programs.

However, it is reasonable to create test cases with
forced shared data areas between threads intentionally to
test the interaction between cores. Threads compete for
shared cache line iteratively in such test cases. The result
of the same application, although implemented with
another chosen data assignment pattern among threads
(without false sharing), is accepted as a reference result of
these tests.

The simplest example of a hand-written test based on
false sharing with internal self-checks is arrays addition, a
classical problem of software engineering (figure 4).
Elements of the arrays are added in a variety of ways in
order to obtain reference data for self-check. Let us
consider an example of two ways of array addition.

Approach 1. No false sharing. Correct data assignment
with relation to memory allocation. Each core has access to
assigned cache lines during the test, for example, core 0
works with even-numbered cache lines, while core 1 works
with odd-numbered cache lines only.

Approach 2. False sharing. Each core has access to
different data in the same cache lines resulting in
continuous data transfer.

The arrays obtained in a variety of ways have to be
compared at the end of the test. Mismatch of the values
shows the evidence of data loss during the test. Also, this
can indicate that some data have not been updated and are
now irrelevant.

C. Pseudorandom test generation
A stochastic verification method based on random tests

generation being guided by a given processor instructions
template is widely used for test coverage increase [2]. The
method helps to find exceedingly rare and transient bugs
such as bugs arising as a result of several instructions
interaction in a processor pipeline, and as a result of
multiple simultaneous cache memory requests.

The following sections of this chapter will address each
of the three stages of random testing which were developed
for RTL-model (pre-silicon) testing on different levels of
the project maturity.

D. Separated cache lines
Microprocessor cores can be tested jointly on condition

that intercore data transfer is reduced to a minimum in the
initial phase of multicore RTL-model verification. In this
case, the templates for the test generator should be
arranged in such a way as to avoid a data collision, i.e.,
each core uses its own private memory regions. Address
mapping in all levels of a cache memory is unique for
every core. A physical memory description assigned in the
generator configuration is given below.

Name Lower Upper

data1_core0, 0x0020000, 0x00207FF,

data2_core0, 0x0030000, 0x00307FF,

data1_core1, 0x0020800, 0x0020FFF,

data2_core1, 0x0030800, 0x0030FFF.

Data areas for core 0 and core 1 occupy different parts
of L1 and L2 cache memories and do not intersect in the
above examples.

This approximation was done in order to prevent
accesses to the same bytes and even to the same cache line
from read and write operations which are being issued by
different cores. Otherwise, no assurance can be given that
accesses to the shared memory region (or shared cache
line) during RTL model simulation happen in the same
order as during reference ISS (instruction set simulator)
run. This situation of uncertainty is called a race condition.

A race condition here occurs when unordered memory
accesses from different cores lead to unpredictable order of
write operations, and, moreover, even if memory areas are
chosen independently for each core, data from such areas
can still hit in different ways of the same cache line in a set
associative cache. In both cases, this results in
impossibility of exhaustive comparison between RTL
model simulator and ISS behaviors [8].

DWDWDWDWDWDWDWDW

THREAD
1

THREAD
0

THREAD
1

THREAD
0

THREAD
1

THREAD
0

THREAD
1

THREAD
0

DWDWDWDWDWDWDWDW

0 8 10 18 20

0 8 10 18 20

CACHE
LINE

BOUNDARY

ARRAY 1

CREATED ARRAY

ARRAY 2

DWDWDWDWDWDWDWDW

THREAD
1

THREAD
1

THREAD
1

THREAD
1

THREAD
0

THREAD
0

THREAD
0

THREAD
0

DWDWDWDWDWDWDWDW

0 8 10 18 20

0 8 10 18 20

ARRAY 1

CREATED ARRAY

ARRAY 2

DWORD BY DWORD LINE BY LINE

COMPARE ARRAYS

4028 30 38

28 30 38 40

28 30 38 40

28 30 38 40

CACHE
LINE

BOUNDARY

Fig. 4. Arrays addition example. Elements are added in two ways in order to obtain reference data for self-check

15

E. Cross-rerun
In the case of isolated cache lines, at the end of the test,

all used lines go into a random modified state. This state
can be used as a starting point to build a more complicated
test. In the second half of the task, the test code which has
just been executed on core 0 is passed to execution to the
core 1 and vice versa. This ensures that each requested
cache line will be in changed (edited) state in the cache
memory of the other core. This technique makes it possible
to improve testing mechanisms efficiency of inter-core
interactions (temporal relationships between the cores and
the cache memory of the cores) due to a greater variety of
test situations. The structure of the cross-run test with
examples of MOESI state transitions is shown in figure 5.

Fig.5. Cross-rerun test structure

The first half of the test at this stage can give the same
level of MOESI protocol state machine coverage as the
complete tests from the previous stage. However, after the
interchange of program code (the second half of the test),
the reachable state space can be expanded by the MOESI
transitions induced by requests from another core.

F. Interleaved memory structure
A whole class of potential errors related to the

simultaneous access of both cores to the same memory
area is overlooked because of the approximations made in
the previous paragraphs. One possible way to solve this
issue is to use interleaved memory structure.

In order to ensure the completeness of the cache
coherence protocol verification, it is necessary to
implement the possibility of simultaneous access to one
cache line by both cores in the test system. For this
purpose, a periodic mask with a cell size smaller than the
cache line size is superimposed to the selected memory
area. In this case, one core gets access to all odd elements,
and the other one — to even.

An important consequence of this organization of data
in memory is the fact that both cores have access to the
same cache line at the same time and they are able to write
and read, without violating the integrity of the data
(accesses occur in different bytes).

Every shared area, to which more than one core is
allowed to write, will contain deterministic values because
of the described data separation. Thus, all data in that area
are predictable at any time.

Special read-only and write-only areas are created to
test the remaining uncovered group of situations involving
simultaneous (within multiple clock cycles) accesses to the
same address in memory by both cores. The load and store
operations are being executed uncontrolled within these
areas due to the asynchronous behavior of the memory
access threads, working with the shared data (race
condition situation). Such requests should not be checked
since they are aimed solely at finding pipeline stalls
(deadlock).

ZONE 2
Instr_01 SD
Instr_02 SD
Instr_03 LD

ZONE 1
Instr_01 LD
Instr_02 OR
Instr_03 B
Instr_04 LH
Instr_05 JR ZONE 2

Instr_01 LD
Instr_02 LD

ZONE 1
Instr_01 LD
Instr_02 OR
Instr_03 SB
Instr_04 SH

CORE 0 MEMORY CORE 1

IN
TE

RL
EA

VE
D

AR
EA

ST
O

RE
O

N
LY

LO
AD

O
N

LY

Cache line

0

20

40

60

Fig. 6. Memory allocation for interleaved memory structure

In the example above (figure 6), both cores share
memory space, but one core will have access only to even
double words, and the other will have access to odd ones.
Thus, tests can cover a much larger number of difficult to
achieve situations which potentially can lead to errors in
the memory subsystem. An example of address allocation
in test templates might look like this:

Valid addresses for core 0: XXXX0-XXXX7,

Valid addresses for core 1: XXXX8-XXXXF.

When using the proposed memory allocation model, it
is necessary to exclude cache-memory log files from
comparison with corresponding ISS logs because it is
impossible to guarantee the same sequence of requests. At
the same time, the obviously correct memory state and
general-purpose registers makes it possible to find errors in
the RTL model with a high probability.

16

All mentioned above methods are simultaneously
applied in the upgraded test system, as well as the
interleaved regions partitioning techniques can be changed
several times during test execution.

V. TESTS QUALITY ANALYSIS

A functional coverage metric was defined to evaluate
the quality of the created pseudo-random tests. It is based
on the state space, built on a combination of test situations,
which are set by chosen events. The type of operation, hit
or miss in the cache memory of any level, the replacement
of modified line in the cache, the types of MOESI state
machine transitions and multicore architectural features are
examples of the events being used to direct test situations.

Examination of microarchitecture events coverage,
data coverage, instruction set coverage and data coherency
coverage is required to ensure proper validation [9].

With the help of heuristic analysis, the concept of test
coverage is introduced and reachable maximum value is
determined as corresponding to 100% of the test coverage.

Functional coverage metric introducing allows to
quantify the degree of testing works completion, as well as
to assess the quality of the tests created by the generator.

0

25

50

75

100

0 25 50 75 100

Fu
nc

tio
na

l c
ov

er
ag

e
m

et
ri

c
va

lu
e,

 %

Test progress, %

Separated cache lines
Cross-rerun
Interleaved

Fig. 7. Graphical representation for functional coverage

Figure 7 shows the growth of functional coverage
during test execution for the three test construction
techniques described above. A sharp increase in the middle
of the tests (50% on the abscissa axis) is due to the fact that
at this point the cross-rerun stage begins.

VI. CONCLUSION

The discussed approach was successfully applied to the
verification of the RTL model of dual-core microprocessor
with SMP developed in SRISA. The method made it
possible to find the majority of memory consistency bugs
and pipeline stalls.

The capabilities of the proposed techniques are proven
to allow the directed random tests to cover highly
sophisticated scenarios that would be very hard to generate
if the generator is configured to produce only random
instruction sequences.

Additionally, the approach was initially considered to
be the first stage of RTL model verification, but the
possibilities of the approach are also of interest for testing
the model at the later stages of its design and functional
maturity.

The testing process begins with creating simple random
tests that check the MOESI coherence protocol. The
advanced random testing method based on the usage of
proposed interleaved memory structures is developed to
increase the probability of finding rare and hard to detect
bugs in the memory subsystem.

REFERENCES
[1] KHisambeev I.SH., CHibisov P.А. Ob odnom metode

postroeniya metrik funktsional'nogo pokrytiya v testirovanii
mikroprotsessorov (On a method for constructing functional
coverage metrics in microprocessor testing) // Problemy
razrabotki perspektivnykh mikro- i nanoehlektronnykh
sistem. Sbornik trudov/M.: IPPM RАN, 2014. S. 63-68 (in
Russian).

[2] Grevtsev N.А., KHisambeev I.SH., CHibisov P.А.
Issledovanie sposobov povysheniya ehffektivnosti
stokhasticheskogo testirovaniya modelej mikroprotsessorov
(Methods to improve efficiency of microprocessor model
stochastic tests) // Problemy razrabotki perspektivnykh
mikro- i nanoehlektronnykh sistem (MES’2016) (in
Russian).

[3] Sorin, D. A Primer on Memory Consistency and Cache
Coherence / Morgan & Claypool, 2012. - 210 p.

[4] Kamkin A.S., Burenkov V.S. Metod masshtabiruemoj
verifikacii PROMELA-modelej protokolov kogerentnosti
ke`sh-pamyati (A method for scalable verification of
PROMELA models of cache coherence protocols) //
Problemy` razrabotki perspektivny`x mikro- i
nanoe`lektronny`x sistem (MES). 2016. №2. S. 54-60 (in
Russian).

[5] Velesevich E. A. Obnaruzhenie i ocenka kolichestva
promaxov kogerentnosti na osnove veroyatnostnoj modeli
(Number of coherence misses detection based on the
probabilistic model), Trudy` ISP RAN, 27:4 (2015), 39-48.
(in Russian).

[6] T. Liu et al., "PREDATOR: Predictive false sharing
detection", PPoPP 2014.

[7] Tongping Liu , Xu Liu, Cheetah: detecting false sharing
efficiently and effectively, Proceedings of the 2016
International Symposium on Code Generation and
Optimization, March 12-18, 2016.

[8] Smirnov A.V., CHibisov P.A. Generator testov dlya
proverki kogerentnosti kehsh-pamyatej mnogoyadernyh
mikroprocessorov (ristretto) (Random test generator for
multicore microprocessor cache coherence verification
(ristretto)) // Problemy razrabotki perspektivnyh mikro- i
nanoehlektronnyh sistem. 2018. Vypusk 2. S. 31-38. (in
Russian).

[9] Satish Kumar Sadasivam, Sangram Alapati, Varun
Mallikarjunan: Test Generation Approach for Post-Silicon
Validation of High End Microprocessor. DSD 2012: 830-
836.

17

