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Abstract — In the paper the early stage of verification 
technology for multicore processor models testing is 
proposed. We demonstrate the applicability of the single core 
verification method extension where creating new multicore 
test generator is not required. The solution scheme deals 
with the adaptation method of some available single core 
stochastic testing approaches to a fully functional multicore 
testing tool.  

The proposed technique has been successfully applied to test 
RTL model of dual-core microprocessor with SMP 
developed in SRISA. The discussed approach was initially 
considered to be the first stage of RTL model testing, but the 
possibilities of the approach are also of interest for testing 
the model at the later stages of its design and functional 
maturity. 

The testing process begins by creating simple random tests 
that check the MOESI coherence protocol. A new advanced 
random testing method based on the usage of proposed 
interleaved memory structures is developed to increase the 
probability of finding rare and hard to detect bugs in the 
memory subsystem. 

The great advantage of the proposed memory allocation 
structure is that both cores gain access to the same cache-line 
simultaneously for read and write. Despite this accessibility, 
the methodology avoids losses of data consistency due to 
cores access to different bytes. Furthermore, each common 
area that is allowed to write to more than one core will 
contain deterministic values at every time. 

The proposed approach aims to detect failures in cache 
coherence protocol, memory subsystem and memory buffers. 
Also, this testing system helps to find machine state errors 
that lead to deadlock. 

Keywords — functional verification, multicore, stochastic 
testing, pseudorandom tests generation, memory subsystem, 
SMP, MOESI, cache coherence, pre-silicon verification. 

I. INTRODUCTION 

The verification strategy of the Register Transfer Level 
(RTL) model of a multi-core microprocessor, considered in 
this paper, is to carry out the most complete testing of the 
project at the early stages of the design cycle using ready-
made testing tools for single-core microprocessors. The 
purpose of the system approach is to verify the inter-core 
interactions between the individual blocks of the memory 
subsystem and the blocks themselves on a system-wide 
basis directly in the process of developing the model. It 
should be emphasized that the generator of single-core test 

programs does not require significant corrections and 
improvements. 

Multi-core architecture of the microprocessor with 
symmetric memory access (SMP) allows to use resources 
of additional processor cores for parallelization of 
resource-intensive calculations or simultaneous multiple 
tasks performance. A common system controller in such a 
system provides access to RAM for each microprocessor 
core, as well as the connection of peripheral devices. An 
example of a block diagram of a multi-core system on a 
chip with SMP memory access architecture is shown in 
figure 1. 
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Fig. 1. Multicore SMP architecture 

The data coherence problem can arise when two or 
more compute cores access the same data at the same time 
if one or more of these accesses are written. Thus, the most 
current data may be in the cache memory of one of the 
cores and will not be available to other devices in the 
system. This problem of data integrity preservation in 
multi-core microprocessors is solved with coherence 
protocol, according to which data synchronization between 
processor cores and peripherals is provided. 

In spite of the fact that it is recommended to avoid data 
conflicts while writing concurrent programs, we consider it 
essential to create random test cases with forced shared 
data areas between threads intentionally to test the 
interaction between cores in a shorter period of time. We 
have the opportunity to apply well-established single core 
verification techniques and solutions for fully functional 
multicore models testing by template customization of 
user-defined memory allocation. 
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The article continues studies [1], [2] of microprocessor 
models stochastic verification. The following sections of 
the article describe the proposed new approach to early 
verification stages of multi-core microprocessor RTL 
models. We put emphasis on the early design stage, as well 
as the applicability of single-threaded testing tools. 

II. SPECIAL ASPECTS OF MEMORY SUBSYSTEM

VERIFICATION 

When designing new microprocessors, the study of 
new microarchitectural solutions effects can be required. 
For this purpose, a number of experimental models, which 
evaluate the effectiveness of solutions on a set of key 
criteria, such as the complexity of the implementation in 
HDL-code, time costs for implementation, performance, 
size of the occupied area on the chip, power consumption 
are created. Different approaches to the development 
require iterative experimental models creation to assess the 
performance and productivity of decisions. 

With each new change, the performance of the model 
must be verified in a limited time. For example, the 
development process has required an assessment of the 
applicability of one of two options (inclusive and 
exclusive) for interaction between first-level and second-
level cache memory. An inclusive organization assumes 

information duplication in the L1 and L2 caches, while 
exclusive cache memory assumes uniqueness of 
information in the L1 and L2 caches. To assess the 
optimality of such architectural decisions a test system is 
needed, which includes architecture certification and 
performance tests. 

The article proposes a route of multi-core 
microprocessor models testing on the early stages. It 
allows to obtain a full-fledged multi-core testing tool by 
adapting existing single-core testing tools. Directed 
stochastic testing is one of the models testing methods at 
the system level. In conditions of extremely limited time 
frames and the lack of human resources, it is necessary to 
test the developed RTL model of a multi-core 
microprocessor without creating new testing tools aimed 
solely at coherence protocol verification.  

The memory subsystem of modern multi-core 
microprocessors consists of multiple components on a 
single chip: MMU, TLB, cache memory of all levels and 
their controllers, data coherence support mechanisms, 
system controller, data prefetch and reordering buffers. 
The presence of many cores increases combinatorial 
complexity of the memory subsystem validation. 

Fig. 2. State transitions in MOESI cache coherence protocol, projected on two cores basis
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The cache coherence protocol describes the state of one 
cache line relative to a similar line in another core and does 
not affect operations on other cache lines. The state of the 
cache line is the state of the corresponding cache 
controller. All states can be divided into stable and 
transient. The stable states are defined by a subset of the 
states: Modified, Owned, Exclusive, Shared, Invalid 
(MOESI). Transitions from one stable state to another in 
modern cache coherence protocols do not occur 
instantaneously, but through transient states [3]. 

High complexity of the cache coherence protocol 
verification problems is due to the fact that combinatorial 
brute force search quickly leads to a state explosion. In [4], 
it is said that the coherence protocol can be verified 
separately according to its specification using the model 
verification method (model-checking). Meanwhile, our 
task is to check not only the design and implementation of 
the selected cache coherence protocol but the 
implementation of the entire memory subsystem in 
conjunction with other microarchitectural improvements 
mentioned above. 

Figure 2 shows all possible transitions from the load-
store requests, for a cache block in MOESI cache 
coherence protocol, projected on two cores bases. 
However, there are many other memory subsystem blocks 
which are used in the real system.  

One of the methods of testing models at the system 
level is the directed stochastic testing method, which is of 
high effectiveness [2]. 

III. APPLICABILITY OF EXISTING TOOLS

Before developing a random test generator for testing 
the memory subsystem of multi-core systems, it is 
proposed to modify the existing testing tools and create 
separate tests for each core, and then run them in parallel. 

 Meanwhile, the responsibility for the correct memory 
allocation between the cores lies on the developer of the 
template.  

When building a template, the memory distribution 
between the cores is taken into account. Memory access 
instructions are randomly selected within specified limits. 
An example of a stochastic testing route for dual-core 
system verification is shown in figure 3. 

The advantages of the technique are: 

• possibility to start testing immediately without
spending resources on developing a special
generator,

• scalability: it is easy to extend the approach for
any number of cores (2-16),

• ability to accurately define test scenarios with
different degrees of freedom,

• absence of necessity to modify the generation
process for different architectural solutions.

Nevertheless, this method has some limitations: it is 
necessary to control memory distribution between the 
cores by the template developer and control thread 

synchronization. Also, the proposed method is aimed at 
memory subsystem verification and does not affect the 
atomic operations testing. 

Fig. 3. Single core generator application diagram for 
multicore verification 

IV.TEST GENERATION PROCESS FOR MULTICORE

MICROPROCESSORS 

This chapter describes the main stages of multi-core 
memory subsystems verification, corresponding to 
different levels of functional development of RTL-model 
maturity. 

A. Hand-written tests aimed at cache protocol 
The testing process begins (starts) with the creation 

simple (hand-written) tests in assembly language aimed at 
checking the MOESI cache coherence protocol. These tests 
check all transitions between MOESI states separately 
(figure 2), formalize and verify the multicore 
synchronization algorithms that will be used for further 
testing. With the help of such tests, the mechanism of the 
test correctness checking execution is debugged. For this 
purpose, the system of ISS (Instruction Set Simulator) and 
RTL-model logs comparison is used. 

B. Hand-written tests with self-check 
The root idea is that modification of independent 

variables sharing the same cache line by different threads 
(false sharing) results in computational performance 
degradation. Even one byte modification leads to the whole 
cache line replacement; therefore there may be situations 
when parallel threads of user application are 
unintentionally updating independent variables which are 
located in the same cache line, interchangeably. In such 
circumstances, a cache line update on one core leads to 
cache line eviction on the other core (cores) [5]. 
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In publications [6] and [7], false sharing detection 
methods are investigated. Scalability for parallel threads of 
execution in an SMP system when there are many data 
conflicts related to the same cache line usage is also 
analyzed. Finally, it is recommended to avoid data 
conflicts described above while writing concurrent 
programs. 

However, it is reasonable to create test cases with 
forced shared data areas between threads intentionally to 
test the interaction between cores. Threads compete for 
shared cache line iteratively in such test cases. The result 
of the same application, although implemented with 
another chosen data assignment pattern among threads 
(without false sharing), is accepted as a reference result of 
these tests. 

The simplest example of a hand-written test based on 
false sharing with internal self-checks is arrays addition, a 
classical problem of software engineering (figure 4). 
Elements of the arrays are added in a variety of ways in 
order to obtain reference data for self-check. Let us 
consider an example of two ways of array addition. 

Approach 1. No false sharing. Correct data assignment 
with relation to memory allocation. Each core has access to 
assigned cache lines during the test, for example, core 0 
works with even-numbered cache lines, while core 1 works 
with odd-numbered cache lines only. 

Approach 2. False sharing. Each core has access to 
different data in the same cache lines resulting in 
continuous data transfer. 

The arrays obtained in a variety of ways have to be 
compared at the end of the test. Mismatch of the values 
shows the evidence of data loss during the test. Also, this 
can indicate that some data have not been updated and are 
now irrelevant. 

C. Pseudorandom test generation 
A stochastic verification method based on random tests 

generation being guided by a given processor instructions 
template is widely used for test coverage increase [2]. The 
method helps to find exceedingly rare and transient bugs 
such as bugs arising as a result of several instructions 
interaction in a processor pipeline, and as a result of 
multiple simultaneous cache memory requests.  

The following sections of this chapter will address each 
of the three stages of random testing which were developed 
for RTL-model (pre-silicon) testing on different levels of 
the project maturity. 

D. Separated cache lines 
Microprocessor cores can be tested jointly on condition 

that intercore data transfer is reduced to a minimum in the 
initial phase of multicore RTL-model verification. In this 
case, the templates for the test generator should be 
arranged in such a way as to avoid a data collision, i.e., 
each core uses its own private memory regions. Address 
mapping in all levels of a cache memory is unique for 
every core. A physical memory description assigned in the 
generator configuration is given below. 

Name     Lower    Upper 

data1_core0,     0x0020000,  0x00207FF, 

data2_core0,     0x0030000,  0x00307FF, 

data1_core1,     0x0020800,  0x0020FFF, 

data2_core1,     0x0030800,   0x0030FFF. 

Data areas for core 0 and core 1 occupy different parts 
of L1 and L2 cache memories and do not intersect in the 
above examples. 

This approximation was done in order to prevent 
accesses to the same bytes and even to the same cache line 
from read and write operations which are being issued by 
different cores. Otherwise, no assurance can be given that 
accesses to the shared memory region (or shared cache 
line) during RTL model simulation happen in the same 
order as during reference ISS (instruction set simulator) 
run. This situation of uncertainty is called a race condition.  

A race condition here occurs when unordered memory 
accesses from different cores lead to unpredictable order of 
write operations, and, moreover, even if memory areas are 
chosen independently for each core, data from such areas 
can still hit in different ways of the same cache line in a set 
associative cache. In both cases, this results in 
impossibility of exhaustive comparison between RTL 
model simulator and ISS behaviors [8]. 
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E. Cross-rerun 
In the case of isolated cache lines, at the end of the test, 

all used lines go into a random modified state. This state 
can be used as a starting point to build a more complicated 
test. In the second half of the task, the test code which has 
just been executed on core 0 is passed to execution to the 
core 1 and vice versa. This ensures that each requested 
cache line will be in changed (edited) state in the cache 
memory of the other core. This technique makes it possible 
to improve testing mechanisms efficiency of inter-core 
interactions (temporal relationships between the cores and 
the cache memory of the cores) due to a greater variety of 
test situations. The structure of the cross-run test with 
examples of MOESI state transitions is shown in figure 5. 

Fig.5. Cross-rerun test structure 

The first half of the test at this stage can give the same 
level of MOESI protocol state machine coverage as the 
complete tests from the previous stage. However, after the 
interchange of program code (the second half of the test), 
the reachable state space can be expanded by the MOESI 
transitions induced by requests from another core. 

F. Interleaved memory structure 
A whole class of potential errors related to the 

simultaneous access of both cores to the same memory 
area is overlooked because of the approximations made in 
the previous paragraphs. One possible way to solve this 
issue is to use interleaved memory structure. 

In order to ensure the completeness of the cache 
coherence protocol verification, it is necessary to 
implement the possibility of simultaneous access to one 
cache line by both cores in the test system. For this 
purpose, a periodic mask with a cell size smaller than the 
cache line size is superimposed to the selected memory 
area. In this case, one core gets access to all odd elements, 
and the other one — to even. 

An important consequence of this organization of data 
in memory is the fact that both cores have access to the 
same cache line at the same time and they are able to write 
and read, without violating the integrity of the data 
(accesses occur in different bytes). 

Every shared area, to which more than one core is 
allowed to write, will contain deterministic values because 
of the described data separation. Thus, all data in that area 
are predictable at any time.  

Special read-only and write-only areas are created to 
test the remaining uncovered group of situations involving 
simultaneous (within multiple clock cycles) accesses to the 
same address in memory by both cores. The load and store 
operations are being executed uncontrolled within these 
areas due to the asynchronous behavior of the memory 
access threads, working with the shared data (race 
condition situation). Such requests should not be checked 
since they are aimed solely at finding pipeline stalls 
(deadlock). 
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Fig. 6. Memory allocation for interleaved memory structure 

In the example above (figure 6), both cores share 
memory space, but one core will have access only to even 
double words, and the other will have access to odd ones. 
Thus, tests can cover a much larger number of difficult to 
achieve situations which potentially can lead to errors in 
the memory subsystem. An example of address allocation 
in test templates might look like this: 

Valid addresses for core 0: XXXX0-XXXX7, 

Valid addresses for core 1: XXXX8-XXXXF. 

When using the proposed memory allocation model, it 
is necessary to exclude cache-memory log files from 
comparison with corresponding ISS logs because it is 
impossible to guarantee the same sequence of requests. At 
the same time, the obviously correct memory state and 
general-purpose registers makes it possible to find errors in 
the RTL model with a high probability. 
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All mentioned above methods are simultaneously 
applied in the upgraded test system, as well as the 
interleaved regions partitioning techniques can be changed 
several times during test execution. 

V. TESTS QUALITY ANALYSIS 

A functional coverage metric was defined to evaluate 
the quality of the created pseudo-random tests. It is based 
on the state space, built on a combination of test situations, 
which are set by chosen events. The type of operation, hit 
or miss in the cache memory of any level, the replacement 
of modified line in the cache, the types of MOESI state 
machine transitions and multicore architectural features are 
examples of the events being used to direct test situations. 

Examination of microarchitecture events coverage, 
data coverage, instruction set coverage and data coherency 
coverage is required to ensure proper validation [9]. 

With the help of heuristic analysis, the concept of test 
coverage is introduced and reachable maximum value is 
determined as corresponding to 100% of the test coverage. 

Functional coverage metric introducing allows to 
quantify the degree of testing works completion, as well as 
to assess the quality of the tests created by the generator. 
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Figure 7 shows the growth of functional coverage 
during test execution for the three test construction 
techniques described above. A sharp increase in the middle 
of the tests (50% on the abscissa axis) is due to the fact that 
at this point the cross-rerun stage begins. 

VI. CONCLUSION

The discussed approach was successfully applied to the 
verification of the RTL model of dual-core microprocessor 
with SMP developed in SRISA. The method made it 
possible to find the majority of memory consistency bugs 
and pipeline stalls. 

The capabilities of the proposed techniques are proven 
to allow the directed random tests to cover highly 
sophisticated scenarios that would be very hard to generate 
if the generator is configured to produce only random 
instruction sequences. 

Additionally, the approach was initially considered to 
be the first stage of RTL model verification, but the 
possibilities of the approach are also of interest for testing 
the model at the later stages of its design and functional 
maturity. 

The testing process begins with creating simple random 
tests that check the MOESI coherence protocol. The 
advanced random testing method based on the usage of 
proposed interleaved memory structures is developed to 
increase the probability of finding rare and hard to detect 
bugs in the memory subsystem. 
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