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Abstract — Modern system-on-chip designs contain multiple 
computational cores with several levels of caches, as well as a 
sophisticated memory subsystem. Functional verification of 
multi-core microprocessor models is known to be a big 
challenge. There are different approaches for memory 
subsystem and cache coherence controllers verification but 
an automated functional test generation strategy is the most 
commonly used in the industry.  

In this paper, the technique of automated multi-core test 
generation is proposed. It can be applied for cache coherence 
and memory subsystem check in a top-level multi-core RTL-
model simulation. Moreover, the presented test generator 
can be very effective in generating test scenarios for FPGA-
prototypes of SoC being designed. In this paper, we also give 
a detailed description of the random test generator itself and 
the capabilities of generated test cases. 

The proposed test generator got its name Ristretto due to the 
similarity of the word Ristretto with the abbreviation formed 
from the words “random instruction sequence” (RIS), and 
the word “threads” (and because ristretto is so concentrated 
and intense).  

Some self-checking validation approaches are suggested to 
obtain correct responses in FPGA-based verification (post-
silicon validation). In the paper, we also discuss the bug-
masking problem in post-silicon random instruction tests 
that arises due to limited observability. 

Keywords — multicore microprocessor, pseudorandom tests 
generation, functional verification, RTL-model, cache 
coherence, false sharing, memory subsystem, post-silicon 
validation, self-checking, bug masking. 

I. INTRODUCTION 

Nowadays, dynamic functional verification techniques 
(so-called simulation-based testing) for RTL models 
verification are widely used in the industry. Random 
automatic test generation is one of the critical parts in the 
traditional verification flow. There are special 
combinatorial random test generators focused on a given 
specific microarchitecture aspect. Such test generators 
solve user-defined constraint satisfaction problem to build 
a test suite. However, on the one hand, it is an extremely 
time-consuming task to develop above-mentioned 
generators, and, on the other hand, the errors which can be 
found by generated tests are too specific or possibly 
irrelevant. This happens because combinatorial random test 
generators are expected to cover the restricted class of 
problems. 

It is well known that the combinatorial complexity of 
memory subsystem grows together with the number of 
computational cores per microprocessor chip. It is critical 
to prove both the proper functioning of the processor core 
stand-alone and the correct operation of the system 
controller with cache coherency modules, as well as to 
prove, by all means, the proper functioning for all the 
blocks as a whole. 

In this paper, we propose the technique of automated 
multicore test generation for functional verification of 
cache coherence and memory subsystem. Moreover, we 
describe test generator (Ristretto) that can be very effective 
in generating test scenarios for FPGA-prototypes of SoC 
being designed. Test cases are created that consist of 
random combinations of load/store instructions to generate 
necessary stimulus. Adjustable load and store sequences 
are supposed to be sufficient memory access instructions 
for multicore microprocessors testing, for pre-silicon and 
post-silicon stages of verification. The generator tries to 
use all possible scenarios of interactions between the 
instruction streams in order to accomplish the required 
functional coverage. Furthermore, we analyze the concept 
of stress-functions (thread irritators).  

Additionally, we are addressing some self-checking 
methods, their limitations and accuracy. At the same time, 
we would like to emphasize the importance of bug-
masking problem for post-silicon stage of verification. The 
ability to evaluate the bug-masking rate of a test provides 
us some valuable information and, that is important, the 
opportunity to select effective tests for regression, as well 
as to find experimentally a well-balanced number of self-
checks during the one test. 

While designing the generator discussed in the 
publication, we have analyzed the existing approaches to 
the verification by means of random instruction test 
generators, such as [1], [2]. Moreover, we have especially 
examined experience of ARM Corporation [3] and IBM 
[4] in the research area. 

II. RANDOM TEST GENERATOR DESCRIPTION

Ristretto random test generator is focused on test cases 
for memory subsystem (MMU, TLB, all levels of caches, 
cache coherency, data prefetch buffers and so on). It can 
create random tests for multicore KOMDIV architecture 
(which is MIPS-like). The generator source codes have 
been written on PERL or C++ language. User-defined 
scenario file can be read by the generator as an input 
configuration, the output of the generator is an assembly 
test program. 
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Test cases are created that consist of random 
combinations of load/store instructions to generate 
necessary stimulus. Every processor core executes its own 
distinct instruction stream (“thread” from the 
programmer’s point of view). All test threads execute 
simultaneously. Moreover, threads can share some 
memory resources to initiate interactions on the system bus 
and coherency transactions on the bus. Memory areas can 
be “shared” (common) or “private”. Memory configuration 
can include “read-only” and ‘write only” areas as well to 
increase test complexity. A simplified memory 
configuration example for the two-core microprocessor is 
illustrated in Fig.1. The direction of the arrows shows the 
data flow direction. 

Any memory area which is allowed to be overwritten 
by more than one core can contain unpredictable values 
because the ordering of writes from different cores cannot 
be identified. As a consequence, data from “write-only” 
memory regions cannot be verified. The following method 
is suggested to solve the problem of checking data in 
common memory areas. 

. . .

Location for core 0 
only (private area)

CORE 0 CORE 1

Shared memory location Shared memory location

Read only

Write only

Location for core 0 
only (private area)

Location for core 1 
only (private area)

Location for core 1 
only (private area)

Fig. 1. Example of memory regions configuration for the 
dual-core processor 

A test program consists of predefined instruction 
subsets and is executed on every microprocessor’s core 
(from a programmer’s point of view test code can be 
referred as a number of execution threads). Most of the 
instructions are memory access instructions, which can 
cause cache hits or cache misses. Several memory regions 
are reserved for every processor core available. The size of 
every region is usually equal from 3 to 5 cache line sizes. 
We will call this set of memory areas “global” memory 
map. During the initialization procedure, every memory 
area is filled with random values by its “own” (designated) 
core. Minimal and maximal numbers of regions are pointed 
out in the configuration file.  

Any test consists of the given number of the 
independent test sections (subtests or test cases, each of 
them is being executed in the same time interval). One 
time interval corresponds to one test case, which consists 
of concurrent test threads. To ensure that every test case 
begins simultaneously on all of the processor cores, it is 
necessary to synchronize their instruction stream 
execution. 

For every time interval (test section) a random subset 
of memory regions from the “global” memory map is 
chosen during test generation. Let’s call these selected 
memory areas “local” memory map. The test generator 
tries to create memory access instructions in these selected 
areas. An example of memory allocation is illustrated in 
Fig. 2. 

The other areas (which are marked grey or white) can 
be called “memory elements”. 

The main idea of such memory maps is to deal with 
memory areas configuration to create false sharing patterns 
in the test cases. False sharing is a well-known issue on 
SMP systems. It occurs when more than one processor 
core writes to the same cache line, however, not at the 
same location. Each simultaneous data update of individual 
elements located in the same cache line by different cores 
leads to entire cache line invalidation. If an updated 
element is used by only one core, all other cores have to 
update their cache lines, even though these updates are 
logically independent of each other. Such contention 
among shared resources is called false sharing. 

As it was said before, every memory region is divided 
into several memory elements. Memory element size is 
chosen randomly, but in such a way that each region 
should have more than two elements. Each memory 
element corresponds to a subset of read and write 
instructions with the maximum possible data size. 
Moreover, for the selected instructions some random 
“equivalent” instructions are generated with less data width 
(for example, 1 store double = 2 store word = 4 store half = 
8 store byte; 1 load double = 2 load word = 4 load half = 8 
load byte). Thus, the test generator fills every memory 
region with different memory access instructions. 

Memory 
location 01

Memory 
location 02

Memory 
location 0n

Core 0 Core 1 Core 0 Core 1

Core 0 Core 1 Core 0 Core 1
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Fig. 2. Example of memory region splitting based on 
attribute: which core has to deal with that region 
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While the test is being generated, two (or more) 
memory regions are randomly selected (they can match on 
occasion). Some instructions can be purely random; some 
of them can be put in increment or decrement order. If 
equal start addresses of the memory areas are selected by 
the test generator, some addresses on different processor 
cores will point to the same cache line with some 
probability (this situation is considered as «false sharing»). 
The generator selects a virtual address to physical address 
translation, initializes general purpose registers, tables of 
data in memory and generates values for self-check for 
every memory region. 

An example of test architecture for several time 
intervals with detailed memory regions mappings in the 
two-core configuration is shown in Fig.3. In the time 
interval “0” every processor core executes initialization 
procedures for their “own” memory regions independently. 
In the time interval “1” both cores interact with each other 

and produce read and write accesses to the only one 
memory region (however, in different bytes - according to 
the scheme described above, where the subtest has been 
generated for the given “local” memory map).  

As a result of such memory representation inside any 
single cache line, any memory region will contain some 
deterministic values and, thus, memory content can be 
validated at the end of the time interval. In the time interval 
“2” an example of the simultaneous interaction of the test 
thread with a stress-function is introduced. In the time 
interval “3” every processor core accesses its own memory 
region in isolation, however, in these conditions all 
previous history and cache state accomplished before the 
time period are taken into account in a natural way. This 
code fragment will be executed twice. Self-checks of 
various types are performed at the end of each time period 
as well as at the end of the test (the number of checks can 
be configured by the user). 

Core 0 Core 1

Location 0nLocation 01 Location 02

Stress-function

th
re

ad
 0

th
re

ad
 1

Time zone 0
(initialization)

Time zone 1

Self-check

Location 1mLocation 11 Location 12

Location 0nLocation 01 Location 02 Location 1mLocation 11 Location 12

Time zone 2

Time zone 3

Fig. 3. Dual-core test architecture with detailed memory allocation description 

To configure the test generator, the user can edit the 
configuration file, which contains the following 
parameters: 

• the number of available processor cores in the
system under test; 

• the minimum and the maximum amount of
memory regions for each core; 

• cache size for all levels of cache, cache
associativity; 

• cache line size;

• the probability of memory regions alignment to
the L1/L2 cache size; 

• the number of subtests;

• memory region minimum and maximum sizes;

• arranged/random memory access offsets ratio;

• subtest re-execution probability;

• false sharing memory patterns probability;

• the number of instructions per subtest (min/max
values); 
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• the frequency of stress functions occurrence per
test; 

• the number and types of self-checks during test
execution. 

The test is generated using the configuration file as a 
template. The purpose of the template for this type of test 
generators differs from one of the traditional template-
based pseudorandom test generators. Here the template is 
not a task for test cases generation and it does not contain 
high-level test description or test specification written in 
pseudocode. It can only set weights of instruction groups, 
the correlation between user-defined functions, stress-
functions and purely random code, the frequency of self-
checks, memory allocation, processor modes and so on. 
Moreover, the user can define samples (or fragments) of 
stress-functions and acceptable degree of their 
randomization. 

III. TEST CASE DESCRIPTION

Ristretto test generator creates random test sequences 
of memory access instructions for multicore 
microprocessors, for pre-silicon and post-silicon stages. 

A stream of instructions for every microprocessor core 
is generated. Synchronization of the streams is achieved by 
macros. Every subtest (or all test) can be repeated with a 
given probability. Generator helps to improve inter-core 
interaction testing efficiency by a considerable diversity of 
test situations. In a first test run, most accesses have a large 
part of cache misses, while in the next run of the test they 
will be hits. 

As the main purpose of the generator is the verification 
of interactions between the memory subsystem 
components, the following requirements are applied to the 
code generation.  

The generator tries to use all possible scenarios of 
interactions between the instruction streams in order to 
accomplish the required functional coverage. This can be 
done by taking into consideration such shared resources as 
cache-lines and physical memory pages. 

During one subtest execution, the following variants of 
shared memory dependencies are possible. 

1) Shared memory usage. Unlinked memory locations
are used in subtest when all pseudorandom memory 
accesses are treated as a stress test on the whole system; 
2) False sharing. Randomly selected microprocessor
cores (two or more) interact through access to multiple 
cache lines. In this case, the memory accesses are made in 
different, mismatched bytes in order to preserve the 
determinism of the values;  
3) True sharing. Processor cores access the same memory
addresses. The order of data changes is controlled by 
synchronization mechanisms, i.e., memory writes do not 
occur simultaneously, but in different time intervals. 
Between these time intervals the cores are synchronized; 
4) Nondeterministic true sharing. The order of memory
write operations from different cores does not need to be 

traced, because data in the write-only memory area is not 
subjected to validation. 

In terms of one core the test situations are 
automatically created by the generator considering some 
microprocessor instruction dependencies. These 
dependencies between memory accesses or between 
instruction pipeline stages for one core can be 
distinguished in these test situations:  

• RAR (read after reading)

• RAW (read after write)

• WAR (write after reading)

• WAW (write after write)

The stress test is created on translation lookaside buffer 
operations (TLB), on a variety of buffering data devices, 
prefetching data stream buffers, data buffers, all levels of 
the cache memory and also mechanisms of exceptions 
situations. 

Thread synchronization is required in order for every 
test iteration to start at the same time. The synchronization 
procedure can be organized in any available way, software 
or hardware. Among the threads synchronization methods 
which are commonly used in multi-core systems, there are 
such methods as inter-processor interrupts, message 
passing through special registers of processor interconnect 
(mailboxes). The mechanism for transferring control 
between the cores, implemented through atomic operations 
such as "read-modify-write" can also be provided.  

Ristretto test generator supports several 
synchronization mechanisms, which are programmatically 
a set of library primitives. In particular, the library includes 
a function to organize the critical sections in the test code 
that are necessary for the timing separation of different 
threads accesses to shared resources which can be used by 
only one core in a given time interval, for example, the 
memory area with the true data sharing 

IV. STRESS-FUNCTIONS

In publication [4] the concept of stress-functions 
(thread irritators) was introduced for simultaneous 
multithreading testing in IBM processors. Three methods 
of improving the test program generation were proposed: 
stress-function (thread), merged threads and replication of 
threads. This approach was adapted and successfully 
applied in the test generator discussed in this article. The 
generator can reach some rare test situations that can find 
errors on prefetching intelligent data buffers and 
mechanisms for rearranging and merging writebacks in 
memory. Since randomized instructions are not enough, it 
is necessary to insert special stress functions into the test 
from time to time instead of a purely random flow of 
memory access instructions. 

The idea of the approach is associated with the 
introduction of the stress function concept as follows. Let 
us assume that there is some memory access instructions 
thread (original, primary thread) running on the first 
microprocessor core. A given number of stress functions 
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are run on one or more of the remaining cores instead of 
other original threads. The stress functions consist of 
repetitive memory accesses. Their purpose is to create 
memory traffic and make stress on the memory controller. 

A stress function can be a short cycle or a sequence of 
identical memory access instructions. The stress function 
interacts with the main thread in order to increase the 
degree of interactions between microprocessor cores at the 
microarchitectural level. The result of the approach is that 
the probability of finding errors in the pre-silicon and post-
silicon stages of the designed microprocessor increases. 
Examples of errors are a hang, livelocks and deadlocks, 
logical errors in the memory subsystem blocks, as well as 
errors associated with the incorrect or untimely updates of 
the cache or memory states. 

Also in publication [4], an approach of merging threads 
is proposed, which is based on the fact that the test 
program generator creates fragments of single-threaded 
tests for each core and then connects them to a 
multithreaded test. The process of test fragment building 
must ensure that a single-threaded test does not change the 
shared memory areas when it will be parallelized across 
multiple threads. Then, multithreaded tests are repeatedly 
created by random selection of single-threaded fragments 
from a ready-made set with their subsequent merging. In 
this approach, due to merging threads, memory access 
instructions from each single-threaded test fragment can be 
executed multiple times, each time in combination with 
different test actions from other threads. Random 
combinations of single-threaded tests reproduce unique 
situations, significantly changing the testing model, as well 
as increasing the probability of finding hard-to-detect 
microarchitectural errors. 

In the thread replication approach, the test generator 
creates single-threaded tests and then replicates multiple 
copies of the test to multiple threads, simulating a 
multithreaded scenario. The user configures the generator 
so that the test can be run in multiple threads. This is 
achieved by the restriction that no two memory access 
instructions can have access to the same memory cell. In 
this case, when threads are replicated, you can get a 
deterministic result at a run time coinciding with the 
predicted value which has been obtained during test 
generation. 

Interesting multithreaded scenarios can be created as a 
result of thread replication because two or more threads 
execute the same sequence of instructions and the same 
resources are used. 

The automated generation of stress functions is also 
possible by the proposed Ristretto test generator, however, 
further research on the effectiveness and feasibility of the 
approaches on merging and replication of the threads is 
required. 

V. SELF-CHECKING METHODS 

There are two variants of the test generator 
implementation. First one was developed for the automatic 
generation of the tests targeted at memory subsystem and 

cache coherency verification while debugging RTL-model 
of the designed SOC. Concurrent test simulation on the 
RTL under test and on the instruction set simulator (ISS) is 
one of the known methods of RTL-model verification. 
After the test has finished, the results obtained on the RTL-
model and ISS are compared. If a mismatch is found, the 
block that caused incorrect behaviour which has led to the 
bug is tracked down. An additional advantage of this 
approach is that it makes possible to detect the error 
immediately, exactly at the position where it occurred with 
an accuracy of processor instruction. 

The second variant of the generator implementation is 
intended to be run on FPGA-boards (post-silicon validation 
stage) and it creates tests with embedded self-checks. This 
implementation does not need to have an external 
instruction set simulator. The execution time of one test 
decreases by several orders of magnitude compared to the 
RTL modelling time [5]. However, an internal state of the 
microprocessor (the same is true for FPGA-prototype) 
cannot be accessed, therefore diagnostic information about 
the origin of the bug is extremely difficult to obtain [6]. 

The reason for this situation is that an effect caused by 
error can be detected only a million cycles after it has 
occurred due to low observability. The more important 
thing is the considerable time consumption for engineers to 
debug such erroneous behaviour. The main question in this 
variant of generator implementation is the selection of 
criteria for a proper test. Method of test validation for such 
tests should be selected as well [7], [8]. 

There exists an approach, called “multi-pass 
consistency check” [7]. According to this method, each test 
case runs several times. The results of the first pass are 
considered as reference results. Each next pass is compared 
with the reference results. The check includes a 
comparison of general purpose registers and some memory 
regions for every pass. A number of restrictions and special 
conditions while generating test guarantee the consistency: 

1) instructions with probable unpredictable result are not
included in the test instruction stream; 
2) any “write-after-write” conflicts in known memory
areas are forbidden because it is impossible to predict the 
order of conflicting store operations of that kind; 
3) any data written in permitted local resource must be
the same in every test pass. 

Despite these limitations, nevertheless, it is useful to 
generate these mentioned unverifiable events, because they 
increase the stress on memory subsystem and help to find 
bugs which cannot be found by other methods [5]. Also in 
[7], it is suggested to generate a slightly modified test code 
for the second and subsequent passes; these implemented 
modifications should not affect the test results. Moreover, 
it is recommended to change threads priority in order to 
change resource or instruction pipeline dependencies while 
the test is being re-executed. 

Additionally, an alternative approach, so-called 
Reversi, has been examined [8]. The Reversi test 
generation system creates pseudo-random test programs in 
such a way that the reference final outcome is known 
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during the test generation process. There is no need to run 
the test on the golden model to obtain valid results. A key 
observation which provides the basis for the Reversi 
development is that the majority of instructions in a 
processor’s ISA have counterparts, i.e., operations whose 
functionality has a corresponding inverse instruction. For 
example, let us consider addition and subtraction, load and 
store and so on. Accordingly, an error can be detected if 
initial and final microprocessor states do not coincide after 
execution of the direct and the reverse test fragments. In 
[9], it is suggested to duplicate every processor instruction 
and compare the results of all such pairs to control the 
correctness of the test. 

One more approach proposing a self-checking 
technique (so-called “ISA diversity”) for pseudo-random 
tests is presented in [10]. The idea is to construct an 
enhanced random instruction test in addition to unmodified 
random instruction test and compare their execution 
results. According to the authors, in major contemporary 
ISAs, more than 75% of instructions can be replaced with 
equivalent instruction or instruction sequence. The 
equivalent instruction sequence is a sequence that produces 
the same response as the original processor instruction. 
The most time-consuming task in this technique is to 
analyze the instruction set architecture (ISA) and identify 
the extent of ISA in the microprocessor under test. All 
processor instructions can be classified into three 
categories. 

1) Full equivalence: instructions for which there are one
or more equivalent ways to realize their operation. This 
category includes most of the arithmetic and logic 
instructions, data transfer instructions, and a large number 
of control flow instructions. 
2) Partial equivalence: instructions for which there are
partially equivalent ways to execute their operation. For 
example, floating point instructions can lose accuracy. 
3) No equivalence: instructions with no equivalences.
This category of instructions cannot be replaced. This 
category includes mainly the privileged instructions that 
access system resources and some others. 

VI. ESTIMATION OF BUG MASKING PROBABILITY

The approaches to self-checking tests generation 
described above do not allow to indicate precisely the 
place where an error has occurred. Besides, post-silicon 
validation is inherently limited by internal signal 
observability, which impacts the ability to diagnose and 
detect bugs. The error can be masked and remain 
undetected during the test’s execution. The example of bug 
masking which occurs when the bug becomes undetectable 
after some other processor instructions have been executed 
since its manifestation is shown on Fig.4. 

An analysis of bug masking probability provides an 
opportunity to select effective tests for regression, as well 
as to find experimentally a well-balanced number of self-
checks during the one test. This analysis should be done in 
the way to avoid oversimplification of test cases and to 
maintain the nonzero probability of finding hard-to-find 
bugs.  

In [11], a software tool is proposed which makes 
possible to assess the pool of potentially unrevealed bugs. 
Moreover, it allows the user to select effective tests with 
the smallest masking effect for the high coverage 
regression. Additionally, one more approach is proposed 
which offers the possibility to make modifications in test 
cases code in the way of minimization for buggy values 
propagation. This tool is expected to increase the bug rate 
due to mask-preventing code instrumentation. 

LW     R2,0x45(R3) 
>>> R2=0x12E5          
/* Loading Incorrect Value - ERROR! */
.   .   .   .   .   .   .   .
LB     R2,0x3F(R5) 
>>> R2=0xB7 
/* Bug Masking */
.   .   .   .   .   .   .   .

Registers checking, including R2:
(R2 = = 0xB7) ? If true – error has been masked.

Fig. 4. Example of bug masking during the test with self-
check 

Bug masking probability analysis is still actual if self-
checking is performed using the results obtained from the 
external instruction set simulator or even the results from 
the internal reference model. The source code of the 
generator with the internal reference model can be written 
on C++ for the purpose of running the generator itself and 
generated tests on FPGA-platform or post-silicon platform. 

VII. CONCLUSIONS

It is widely accepted that automatic test program 
generation is a fundamental approach to microprocessor 
functional verification, including, in particular, memory 
subsystem and cache coherency mechanisms. In the paper, 
we presented a technique of automated multi-core test 
generation. The proposed test generator Ristretto is 
expected to be very effective in generating test scenarios 
for RTL-models and FPGA-prototypes of SoC being 
designed, i.e. for both pre-silicon and post-silicon stages. 
In fact, there is no need to have reference responses from 
instruction set simulator, in contrast to the previous 
multicore test generation technique which has also been 
developed at SRISA RAS [12]. 

To reach a high level of test coverage in a reasonable 
time, Ristretto generator performs all different scenarios of 
the interaction between processor cores from the point of 
view of data dependencies. 

Moreover, some self-checking validation approaches 
are suggested to obtain reference responses in FPGA-based 
verification (post-silicon validation). In the paper, we also 
discuss the bug-masking problem in a post-silicon random 
test that arises due to limited observability. 
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