
Selected Articles of MES conference, 2019, issue 2 © IPPM RAS

DOI 10.31114/2078-7707-2019-2-25-31

Ristretto: Random Test Generator for Multicore Microprocessor
Cache Coherence Verification

A.V. Smirnov, P.A. Chibisov

Scientific Research Institute of System Analysis (SRISA RAS), chibisov@cs.niisi.ras.ru

Abstract — Modern system-on-chip designs contain multiple
computational cores with several levels of caches, as well as a
sophisticated memory subsystem. Functional verification of
multi-core microprocessor models is known to be a big
challenge. There are different approaches for memory
subsystem and cache coherence controllers verification but
an automated functional test generation strategy is the most
commonly used in the industry.

In this paper, the technique of automated multi-core test
generation is proposed. It can be applied for cache coherence
and memory subsystem check in a top-level multi-core RTL-
model simulation. Moreover, the presented test generator
can be very effective in generating test scenarios for FPGA-
prototypes of SoC being designed. In this paper, we also give
a detailed description of the random test generator itself and
the capabilities of generated test cases.

The proposed test generator got its name Ristretto due to the
similarity of the word Ristretto with the abbreviation formed
from the words “random instruction sequence” (RIS), and
the word “threads” (and because ristretto is so concentrated
and intense).

Some self-checking validation approaches are suggested to
obtain correct responses in FPGA-based verification (post-
silicon validation). In the paper, we also discuss the bug-
masking problem in post-silicon random instruction tests
that arises due to limited observability.

Keywords — multicore microprocessor, pseudorandom tests
generation, functional verification, RTL-model, cache
coherence, false sharing, memory subsystem, post-silicon
validation, self-checking, bug masking.

I. INTRODUCTION

Nowadays, dynamic functional verification techniques
(so-called simulation-based testing) for RTL models
verification are widely used in the industry. Random
automatic test generation is one of the critical parts in the
traditional verification flow. There are special
combinatorial random test generators focused on a given
specific microarchitecture aspect. Such test generators
solve user-defined constraint satisfaction problem to build
a test suite. However, on the one hand, it is an extremely
time-consuming task to develop above-mentioned
generators, and, on the other hand, the errors which can be
found by generated tests are too specific or possibly
irrelevant. This happens because combinatorial random test
generators are expected to cover the restricted class of
problems.

It is well known that the combinatorial complexity of
memory subsystem grows together with the number of
computational cores per microprocessor chip. It is critical
to prove both the proper functioning of the processor core
stand-alone and the correct operation of the system
controller with cache coherency modules, as well as to
prove, by all means, the proper functioning for all the
blocks as a whole.

In this paper, we propose the technique of automated
multicore test generation for functional verification of
cache coherence and memory subsystem. Moreover, we
describe test generator (Ristretto) that can be very effective
in generating test scenarios for FPGA-prototypes of SoC
being designed. Test cases are created that consist of
random combinations of load/store instructions to generate
necessary stimulus. Adjustable load and store sequences
are supposed to be sufficient memory access instructions
for multicore microprocessors testing, for pre-silicon and
post-silicon stages of verification. The generator tries to
use all possible scenarios of interactions between the
instruction streams in order to accomplish the required
functional coverage. Furthermore, we analyze the concept
of stress-functions (thread irritators).

Additionally, we are addressing some self-checking
methods, their limitations and accuracy. At the same time,
we would like to emphasize the importance of bug-
masking problem for post-silicon stage of verification. The
ability to evaluate the bug-masking rate of a test provides
us some valuable information and, that is important, the
opportunity to select effective tests for regression, as well
as to find experimentally a well-balanced number of self-
checks during the one test.

While designing the generator discussed in the
publication, we have analyzed the existing approaches to
the verification by means of random instruction test
generators, such as [1], [2]. Moreover, we have especially
examined experience of ARM Corporation [3] and IBM
[4] in the research area.

II. RANDOM TEST GENERATOR DESCRIPTION

Ristretto random test generator is focused on test cases
for memory subsystem (MMU, TLB, all levels of caches,
cache coherency, data prefetch buffers and so on). It can
create random tests for multicore KOMDIV architecture
(which is MIPS-like). The generator source codes have
been written on PERL or C++ language. User-defined
scenario file can be read by the generator as an input
configuration, the output of the generator is an assembly
test program.

25

Test cases are created that consist of random
combinations of load/store instructions to generate
necessary stimulus. Every processor core executes its own
distinct instruction stream (“thread” from the
programmer’s point of view). All test threads execute
simultaneously. Moreover, threads can share some
memory resources to initiate interactions on the system bus
and coherency transactions on the bus. Memory areas can
be “shared” (common) or “private”. Memory configuration
can include “read-only” and ‘write only” areas as well to
increase test complexity. A simplified memory
configuration example for the two-core microprocessor is
illustrated in Fig.1. The direction of the arrows shows the
data flow direction.

Any memory area which is allowed to be overwritten
by more than one core can contain unpredictable values
because the ordering of writes from different cores cannot
be identified. As a consequence, data from “write-only”
memory regions cannot be verified. The following method
is suggested to solve the problem of checking data in
common memory areas.

. . .

Location for core 0
only (private area)

CORE 0 CORE 1

Shared memory location Shared memory location

Read only

Write only

Location for core 0
only (private area)

Location for core 1
only (private area)

Location for core 1
only (private area)

Fig. 1. Example of memory regions configuration for the
dual-core processor

A test program consists of predefined instruction
subsets and is executed on every microprocessor’s core
(from a programmer’s point of view test code can be
referred as a number of execution threads). Most of the
instructions are memory access instructions, which can
cause cache hits or cache misses. Several memory regions
are reserved for every processor core available. The size of
every region is usually equal from 3 to 5 cache line sizes.
We will call this set of memory areas “global” memory
map. During the initialization procedure, every memory
area is filled with random values by its “own” (designated)
core. Minimal and maximal numbers of regions are pointed
out in the configuration file.

Any test consists of the given number of the
independent test sections (subtests or test cases, each of
them is being executed in the same time interval). One
time interval corresponds to one test case, which consists
of concurrent test threads. To ensure that every test case
begins simultaneously on all of the processor cores, it is
necessary to synchronize their instruction stream
execution.

For every time interval (test section) a random subset
of memory regions from the “global” memory map is
chosen during test generation. Let’s call these selected
memory areas “local” memory map. The test generator
tries to create memory access instructions in these selected
areas. An example of memory allocation is illustrated in
Fig. 2.

The other areas (which are marked grey or white) can
be called “memory elements”.

The main idea of such memory maps is to deal with
memory areas configuration to create false sharing patterns
in the test cases. False sharing is a well-known issue on
SMP systems. It occurs when more than one processor
core writes to the same cache line, however, not at the
same location. Each simultaneous data update of individual
elements located in the same cache line by different cores
leads to entire cache line invalidation. If an updated
element is used by only one core, all other cores have to
update their cache lines, even though these updates are
logically independent of each other. Such contention
among shared resources is called false sharing.

As it was said before, every memory region is divided
into several memory elements. Memory element size is
chosen randomly, but in such a way that each region
should have more than two elements. Each memory
element corresponds to a subset of read and write
instructions with the maximum possible data size.
Moreover, for the selected instructions some random
“equivalent” instructions are generated with less data width
(for example, 1 store double = 2 store word = 4 store half =
8 store byte; 1 load double = 2 load word = 4 load half = 8
load byte). Thus, the test generator fills every memory
region with different memory access instructions.

Memory
location 01

Memory
location 02

Memory
location 0n

Core 0 Core 1 Core 0 Core 1

Core 0 Core 1 Core 0 Core 1

size

aligning

. . .

Memory
location 11

Memory
location 12

Memory
location 1m

Core 1 Core 0 Core 1

Core 1 Core 0 Core 1

. . .

Core 0

Core 1

Core 0

Core 0

Fig. 2. Example of memory region splitting based on
attribute: which core has to deal with that region

26

While the test is being generated, two (or more)
memory regions are randomly selected (they can match on
occasion). Some instructions can be purely random; some
of them can be put in increment or decrement order. If
equal start addresses of the memory areas are selected by
the test generator, some addresses on different processor
cores will point to the same cache line with some
probability (this situation is considered as «false sharing»).
The generator selects a virtual address to physical address
translation, initializes general purpose registers, tables of
data in memory and generates values for self-check for
every memory region.

An example of test architecture for several time
intervals with detailed memory regions mappings in the
two-core configuration is shown in Fig.3. In the time
interval “0” every processor core executes initialization
procedures for their “own” memory regions independently.
In the time interval “1” both cores interact with each other

and produce read and write accesses to the only one
memory region (however, in different bytes - according to
the scheme described above, where the subtest has been
generated for the given “local” memory map).

As a result of such memory representation inside any
single cache line, any memory region will contain some
deterministic values and, thus, memory content can be
validated at the end of the time interval. In the time interval
“2” an example of the simultaneous interaction of the test
thread with a stress-function is introduced. In the time
interval “3” every processor core accesses its own memory
region in isolation, however, in these conditions all
previous history and cache state accomplished before the
time period are taken into account in a natural way. This
code fragment will be executed twice. Self-checks of
various types are performed at the end of each time period
as well as at the end of the test (the number of checks can
be configured by the user).

Core 0 Core 1

Location 0nLocation 01 Location 02

Stress-function

th
re

ad
 0

th
re

ad
 1

Time zone 0
(initialization)

Time zone 1

Self-check

Location 1mLocation 11 Location 12

Location 0nLocation 01 Location 02 Location 1mLocation 11 Location 12

Time zone 2

Time zone 3

Fig. 3. Dual-core test architecture with detailed memory allocation description

To configure the test generator, the user can edit the
configuration file, which contains the following
parameters:

• the number of available processor cores in the
system under test;

• the minimum and the maximum amount of
memory regions for each core;

• cache size for all levels of cache, cache
associativity;

• cache line size;

• the probability of memory regions alignment to
the L1/L2 cache size;

• the number of subtests;

• memory region minimum and maximum sizes;

• arranged/random memory access offsets ratio;

• subtest re-execution probability;

• false sharing memory patterns probability;

• the number of instructions per subtest (min/max
values);

27

• the frequency of stress functions occurrence per
test;

• the number and types of self-checks during test
execution.

The test is generated using the configuration file as a
template. The purpose of the template for this type of test
generators differs from one of the traditional template-
based pseudorandom test generators. Here the template is
not a task for test cases generation and it does not contain
high-level test description or test specification written in
pseudocode. It can only set weights of instruction groups,
the correlation between user-defined functions, stress-
functions and purely random code, the frequency of self-
checks, memory allocation, processor modes and so on.
Moreover, the user can define samples (or fragments) of
stress-functions and acceptable degree of their
randomization.

III. TEST CASE DESCRIPTION

Ristretto test generator creates random test sequences
of memory access instructions for multicore
microprocessors, for pre-silicon and post-silicon stages.

A stream of instructions for every microprocessor core
is generated. Synchronization of the streams is achieved by
macros. Every subtest (or all test) can be repeated with a
given probability. Generator helps to improve inter-core
interaction testing efficiency by a considerable diversity of
test situations. In a first test run, most accesses have a large
part of cache misses, while in the next run of the test they
will be hits.

As the main purpose of the generator is the verification
of interactions between the memory subsystem
components, the following requirements are applied to the
code generation.

The generator tries to use all possible scenarios of
interactions between the instruction streams in order to
accomplish the required functional coverage. This can be
done by taking into consideration such shared resources as
cache-lines and physical memory pages.

During one subtest execution, the following variants of
shared memory dependencies are possible.

1) Shared memory usage. Unlinked memory locations
are used in subtest when all pseudorandom memory
accesses are treated as a stress test on the whole system;
2) False sharing. Randomly selected microprocessor
cores (two or more) interact through access to multiple
cache lines. In this case, the memory accesses are made in
different, mismatched bytes in order to preserve the
determinism of the values;
3) True sharing. Processor cores access the same memory
addresses. The order of data changes is controlled by
synchronization mechanisms, i.e., memory writes do not
occur simultaneously, but in different time intervals.
Between these time intervals the cores are synchronized;
4) Nondeterministic true sharing. The order of memory
write operations from different cores does not need to be

traced, because data in the write-only memory area is not
subjected to validation.

In terms of one core the test situations are
automatically created by the generator considering some
microprocessor instruction dependencies. These
dependencies between memory accesses or between
instruction pipeline stages for one core can be
distinguished in these test situations:

• RAR (read after reading)

• RAW (read after write)

• WAR (write after reading)

• WAW (write after write)

The stress test is created on translation lookaside buffer
operations (TLB), on a variety of buffering data devices,
prefetching data stream buffers, data buffers, all levels of
the cache memory and also mechanisms of exceptions
situations.

Thread synchronization is required in order for every
test iteration to start at the same time. The synchronization
procedure can be organized in any available way, software
or hardware. Among the threads synchronization methods
which are commonly used in multi-core systems, there are
such methods as inter-processor interrupts, message
passing through special registers of processor interconnect
(mailboxes). The mechanism for transferring control
between the cores, implemented through atomic operations
such as "read-modify-write" can also be provided.

Ristretto test generator supports several
synchronization mechanisms, which are programmatically
a set of library primitives. In particular, the library includes
a function to organize the critical sections in the test code
that are necessary for the timing separation of different
threads accesses to shared resources which can be used by
only one core in a given time interval, for example, the
memory area with the true data sharing

IV. STRESS-FUNCTIONS

In publication [4] the concept of stress-functions
(thread irritators) was introduced for simultaneous
multithreading testing in IBM processors. Three methods
of improving the test program generation were proposed:
stress-function (thread), merged threads and replication of
threads. This approach was adapted and successfully
applied in the test generator discussed in this article. The
generator can reach some rare test situations that can find
errors on prefetching intelligent data buffers and
mechanisms for rearranging and merging writebacks in
memory. Since randomized instructions are not enough, it
is necessary to insert special stress functions into the test
from time to time instead of a purely random flow of
memory access instructions.

The idea of the approach is associated with the
introduction of the stress function concept as follows. Let
us assume that there is some memory access instructions
thread (original, primary thread) running on the first
microprocessor core. A given number of stress functions

28

are run on one or more of the remaining cores instead of
other original threads. The stress functions consist of
repetitive memory accesses. Their purpose is to create
memory traffic and make stress on the memory controller.

A stress function can be a short cycle or a sequence of
identical memory access instructions. The stress function
interacts with the main thread in order to increase the
degree of interactions between microprocessor cores at the
microarchitectural level. The result of the approach is that
the probability of finding errors in the pre-silicon and post-
silicon stages of the designed microprocessor increases.
Examples of errors are a hang, livelocks and deadlocks,
logical errors in the memory subsystem blocks, as well as
errors associated with the incorrect or untimely updates of
the cache or memory states.

Also in publication [4], an approach of merging threads
is proposed, which is based on the fact that the test
program generator creates fragments of single-threaded
tests for each core and then connects them to a
multithreaded test. The process of test fragment building
must ensure that a single-threaded test does not change the
shared memory areas when it will be parallelized across
multiple threads. Then, multithreaded tests are repeatedly
created by random selection of single-threaded fragments
from a ready-made set with their subsequent merging. In
this approach, due to merging threads, memory access
instructions from each single-threaded test fragment can be
executed multiple times, each time in combination with
different test actions from other threads. Random
combinations of single-threaded tests reproduce unique
situations, significantly changing the testing model, as well
as increasing the probability of finding hard-to-detect
microarchitectural errors.

In the thread replication approach, the test generator
creates single-threaded tests and then replicates multiple
copies of the test to multiple threads, simulating a
multithreaded scenario. The user configures the generator
so that the test can be run in multiple threads. This is
achieved by the restriction that no two memory access
instructions can have access to the same memory cell. In
this case, when threads are replicated, you can get a
deterministic result at a run time coinciding with the
predicted value which has been obtained during test
generation.

Interesting multithreaded scenarios can be created as a
result of thread replication because two or more threads
execute the same sequence of instructions and the same
resources are used.

The automated generation of stress functions is also
possible by the proposed Ristretto test generator, however,
further research on the effectiveness and feasibility of the
approaches on merging and replication of the threads is
required.

V. SELF-CHECKING METHODS

There are two variants of the test generator
implementation. First one was developed for the automatic
generation of the tests targeted at memory subsystem and

cache coherency verification while debugging RTL-model
of the designed SOC. Concurrent test simulation on the
RTL under test and on the instruction set simulator (ISS) is
one of the known methods of RTL-model verification.
After the test has finished, the results obtained on the RTL-
model and ISS are compared. If a mismatch is found, the
block that caused incorrect behaviour which has led to the
bug is tracked down. An additional advantage of this
approach is that it makes possible to detect the error
immediately, exactly at the position where it occurred with
an accuracy of processor instruction.

The second variant of the generator implementation is
intended to be run on FPGA-boards (post-silicon validation
stage) and it creates tests with embedded self-checks. This
implementation does not need to have an external
instruction set simulator. The execution time of one test
decreases by several orders of magnitude compared to the
RTL modelling time [5]. However, an internal state of the
microprocessor (the same is true for FPGA-prototype)
cannot be accessed, therefore diagnostic information about
the origin of the bug is extremely difficult to obtain [6].

The reason for this situation is that an effect caused by
error can be detected only a million cycles after it has
occurred due to low observability. The more important
thing is the considerable time consumption for engineers to
debug such erroneous behaviour. The main question in this
variant of generator implementation is the selection of
criteria for a proper test. Method of test validation for such
tests should be selected as well [7], [8].

There exists an approach, called “multi-pass
consistency check” [7]. According to this method, each test
case runs several times. The results of the first pass are
considered as reference results. Each next pass is compared
with the reference results. The check includes a
comparison of general purpose registers and some memory
regions for every pass. A number of restrictions and special
conditions while generating test guarantee the consistency:

1) instructions with probable unpredictable result are not
included in the test instruction stream;
2) any “write-after-write” conflicts in known memory
areas are forbidden because it is impossible to predict the
order of conflicting store operations of that kind;
3) any data written in permitted local resource must be
the same in every test pass.

Despite these limitations, nevertheless, it is useful to
generate these mentioned unverifiable events, because they
increase the stress on memory subsystem and help to find
bugs which cannot be found by other methods [5]. Also in
[7], it is suggested to generate a slightly modified test code
for the second and subsequent passes; these implemented
modifications should not affect the test results. Moreover,
it is recommended to change threads priority in order to
change resource or instruction pipeline dependencies while
the test is being re-executed.

Additionally, an alternative approach, so-called
Reversi, has been examined [8]. The Reversi test
generation system creates pseudo-random test programs in
such a way that the reference final outcome is known

29

during the test generation process. There is no need to run
the test on the golden model to obtain valid results. A key
observation which provides the basis for the Reversi
development is that the majority of instructions in a
processor’s ISA have counterparts, i.e., operations whose
functionality has a corresponding inverse instruction. For
example, let us consider addition and subtraction, load and
store and so on. Accordingly, an error can be detected if
initial and final microprocessor states do not coincide after
execution of the direct and the reverse test fragments. In
[9], it is suggested to duplicate every processor instruction
and compare the results of all such pairs to control the
correctness of the test.

One more approach proposing a self-checking
technique (so-called “ISA diversity”) for pseudo-random
tests is presented in [10]. The idea is to construct an
enhanced random instruction test in addition to unmodified
random instruction test and compare their execution
results. According to the authors, in major contemporary
ISAs, more than 75% of instructions can be replaced with
equivalent instruction or instruction sequence. The
equivalent instruction sequence is a sequence that produces
the same response as the original processor instruction.
The most time-consuming task in this technique is to
analyze the instruction set architecture (ISA) and identify
the extent of ISA in the microprocessor under test. All
processor instructions can be classified into three
categories.

1) Full equivalence: instructions for which there are one
or more equivalent ways to realize their operation. This
category includes most of the arithmetic and logic
instructions, data transfer instructions, and a large number
of control flow instructions.
2) Partial equivalence: instructions for which there are
partially equivalent ways to execute their operation. For
example, floating point instructions can lose accuracy.
3) No equivalence: instructions with no equivalences.
This category of instructions cannot be replaced. This
category includes mainly the privileged instructions that
access system resources and some others.

VI. ESTIMATION OF BUG MASKING PROBABILITY

The approaches to self-checking tests generation
described above do not allow to indicate precisely the
place where an error has occurred. Besides, post-silicon
validation is inherently limited by internal signal
observability, which impacts the ability to diagnose and
detect bugs. The error can be masked and remain
undetected during the test’s execution. The example of bug
masking which occurs when the bug becomes undetectable
after some other processor instructions have been executed
since its manifestation is shown on Fig.4.

An analysis of bug masking probability provides an
opportunity to select effective tests for regression, as well
as to find experimentally a well-balanced number of self-
checks during the one test. This analysis should be done in
the way to avoid oversimplification of test cases and to
maintain the nonzero probability of finding hard-to-find
bugs.

In [11], a software tool is proposed which makes
possible to assess the pool of potentially unrevealed bugs.
Moreover, it allows the user to select effective tests with
the smallest masking effect for the high coverage
regression. Additionally, one more approach is proposed
which offers the possibility to make modifications in test
cases code in the way of minimization for buggy values
propagation. This tool is expected to increase the bug rate
due to mask-preventing code instrumentation.

LW R2,0x45(R3)
>>> R2=0x12E5
/* Loading Incorrect Value - ERROR! */
.
LB R2,0x3F(R5)
>>> R2=0xB7
/* Bug Masking */
.

Registers checking, including R2:
(R2 = = 0xB7) ? If true – error has been masked.

Fig. 4. Example of bug masking during the test with self-
check

Bug masking probability analysis is still actual if self-
checking is performed using the results obtained from the
external instruction set simulator or even the results from
the internal reference model. The source code of the
generator with the internal reference model can be written
on C++ for the purpose of running the generator itself and
generated tests on FPGA-platform or post-silicon platform.

VII. CONCLUSIONS

It is widely accepted that automatic test program
generation is a fundamental approach to microprocessor
functional verification, including, in particular, memory
subsystem and cache coherency mechanisms. In the paper,
we presented a technique of automated multi-core test
generation. The proposed test generator Ristretto is
expected to be very effective in generating test scenarios
for RTL-models and FPGA-prototypes of SoC being
designed, i.e. for both pre-silicon and post-silicon stages.
In fact, there is no need to have reference responses from
instruction set simulator, in contrast to the previous
multicore test generation technique which has also been
developed at SRISA RAS [12].

To reach a high level of test coverage in a reasonable
time, Ristretto generator performs all different scenarios of
the interaction between processor cores from the point of
view of data dependencies.

Moreover, some self-checking validation approaches
are suggested to obtain reference responses in FPGA-based
verification (post-silicon validation). In the paper, we also
discuss the bug-masking problem in a post-silicon random
test that arises due to limited observability.

30

REFERENCES
[1] Hudson J., Kurucheti G. A Configurable Random

Instruction Sequence (RIS) Tool for Memory Coherence in
Multi-processor Systems. Workshop on Microprocessor
Test and Verification, 2014, pp. 98-101. DOI:
10.1109/MTV.2014.26

[2] Venkatesan D., Nagarajan P. A Case Study of
Multiprocessor Bugs Found Using RIS Generators and
Memory Usage Techniques. Workshop on Microprocessor
Test and Verification, 2014, pp. 4-9. DOI:
10.1109/MTV.2014.28

[3] S. Thiruvathodi and D. Yeggina, "A Random Instruction
Sequence Generator for ARM-Based Systems," 2014 15th
International Microprocessor Test and Verification
Workshop (MTV), Austin, TX, USA, 2014, pp. 73-77.
doi:10.1109/MTV.2014.20

[4] Ludden J.M., Rimon M., Hickerson B.G., Adir A. (2011)
Advances in Simultaneous Multithreading Testcase
Generation Methods. In: Barner S., Harris I., Kroening D.,
Raz O. (eds) Hardware and Software: Verification and
Testing. HVC 2010. Lecture Notes in Computer Science,
vol 6504. Springer, Berlin, Heidelberg.

[5] Wisam, K., et al., “Improving Post-Silicon Validation
Efficiency by Using Pre-Generated Data,” Proc. Intl. Haifa
Verification Conf., pp. 166-181, 2013.

[6] Satish Kumar Sadasivam, Sangram Alapati, Varun
Mallikarjunan: Test Generation Approach for Post-Silicon
Validation of High-End Microprocessor. DSD 2012: 830-
836.

[7] Allon Adir, Amir Nahir, Avi Ziv: Concurrent Generation of
Concurrent Programs for Post-Silicon Validation. IEEE
Trans. on CAD of Integrated Circuits and Systems 31(8):
1297-1302 (2012).

[8] Ilya Wagner, Valeria Bertacco Post-Silicon and Runtime
Verification for Modern Processors, Springer, 2011, 224 p.

[9] Lin, David; Singh, Eshan; Barrett, Clark; Mitra, Subhasish.
/ A structured approach to post-silicon validation and debug
using symbolic quick error detection. International Test
Conference 2015, ITC 2015 - Proceedings. Vol. 2015-
November Institute of Electrical and Electronics Engineers
Inc., 2015.

[10] Nikos Foutris, Dimitris Gizopoulos, Mihalis Psarakis,
Xavier Vera, and Antonio Gonzalez. 2011. Accelerating
microprocessor silicon validation by exposing ISA
diversity. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-
44). ACM, New York, NY, USA, 386-397.

[11] Doowon Lee, Tom Kolan, Arkadiy Morgenshtein, Vitali
Sokhin, Ronny Morad, Avi Ziv, Valeria Bertacco:
Probabilistic bug-masking analysis for post-silicon tests in
microprocessor verification. DAC 2016: 24:1-24:6.

[12] Grevcev N.A., CHibisov P.A. Podhod k stohasticheskomu
testirovaniyu RTL-modelej mnogoyadernyh
mikroprocessorov (A Practical Approach to Verification of
multicore Microprocessor models) // Problemy razrabotki
perspektivnyh mikro- i nanoehlektronnyh sistem. 2018.
Vypusk 2. S. 52-58. (in Russian).

31

