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Abstract — Design of recursive digital filters involves sequen-
tial execution of the stages of functional and structural syn-
thesis. At the stage of functional synthesis, the zeros and
poles of the transfer function are calculated, which satisfy
the specification of the requirements for the characteristics
of the filter. At the stage of structural synthesis, a block dia-
gram is formed. At this stage, the calculation of the structure
coefficients (parametric synthesis) and the quantization of
coefficients are performed. With the traditional approach at
the stage of functional synthesis, the effects of the finite word
length are not taken into account. At the same time, the stage
of structural synthesis leads to distortion of the exact value of
the coefficients of the digital filter, distortion of the zeros and
poles of the digital filter, distortion of the transfer function,
and frequency response. Therefore, it is necessary to either
increase the bit depth or change the structural scheme. De-
spite a large number of publications describing the various
structures, their applications are limited by the unique calcu-
lation method for each structure and by the extremely short
range of the structures offered in available developed sys-
tems. This paper is an analytical report, which describes a
new approach to the synthesis of recursive digital filters with
finite word length. Based on the studied number-theoretic
nature of zeros and poles of the digital filters with limited
word length, it is proposed to finally compute the zeros and
poles of the digital filters at the stage of functional synthesis,
considering the limitations on the length of the words. The
next step of structural synthesis will not distort the results of
functional synthesis. The completed studies have shown the
connection between the structure of the digital filters and the
number-theoretic nature of zeros and poles. It is proposed to
generate structural schemes by this nature, based on the
revealed algebraic features of the matrix description of
structures.

Keywords — IIR digital filter, finite word length, algebraic
numbers, quantization of coefficients, z-plane discretization,
z-plane topography, topological matrix

l. INTRODUCTION

Despite the long history [1] - [3], the problem of the
synthesis of recursive digital filters, taking into account the
finite digit capacity of the numbers involved in the calcula-
tions, is far from the final solution. If one does not take
into account the finite accuracy of calculations, the synthe-
sis of recursive filters is well studied, described and im-
plemented in development systems [4] - [6].

In the absence of stringent requirements for the charac-
teristics of the digital filter, the problem of synthesis and
realization is rather simply solved, and under the condition
of limited capacity. With the complication of the require-
ments for the characteristics of the digital filter, a large
number of problems manifest themselves, which prove to
be insurmountable in practical implementation.

This circumstance leads to the fact that developers
abandon attempts to realize the advantages of recursive
digital filters over FIR filters in terms of the amount of
computing resources. To confirm this fact, we give an ex-
ample. For implementation on programmable logic circuits
(FPGAS), Altera Corporation offered developers a design
tool such as digital filter compiler with infinite impulse
response IR Compilator. However, in 2003, Altera
stopped supporting this product [7].

The reason for the difficulties in the synthesis of IIR
digital filters with finite word length is the insufficient
depth of the study of the fundamental features of computa-
tional processes in recursive digital filters, the lack of de-
velopment tools that take into account these features.

In the series of publications, which include [8] - [11], a
new approach to the synthesis of IIR digital filters with
finite word length is proposed, in which attempts are made
to overcome the mentioned difficulties of synthesis.

This paper is an analytical review of papers describing
this new approach.

By the way, it makes sense to note the subtlety in the
use of terminology related to IR filters. It is believed that
the terms recursive digital filter and the digital filter with
infinite impulse response are equivalent. However, when
the filter is implemented in fixed-point arithmetic, it is
impossible to represent numbers whose absolute value is
too small. Therefore, the length of the impulse response
will be either finite (however greater than the filter order)
or infinite. Nevertheless, this infinity will exist due to the
presence of parasitic oscillations of the limit cycle.

Therefore, it appears that the term recursive filter is
more accurate and will be used in this work.
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Il.  APPROACHES TO THE SYNTHESIS
OF RECURSIVE DIGITAL FILTERS

WITH FINITE WORD LENGTH

In the traditional approach to the synthesis of recursive
filters, one can single out [4] - [6] such stages as functional
synthesis, structural synthesis, parametric synthesis, quan-
tization of coefficients.In functional synthesis, the transfer
function (it’s zeros and poles) is calculated. At structural
synthesis stage, the block diagram is chosen. Parametric
synthesis is devoted to the calculation of the coefficients of
the selected structure without taking into account the finite
word length.

The latter operation leads to the distortion of the exact
value of the coefficients of the digital filter, to the distor-
tion of the zeros and poles of the digital filter, to the distor-
tion of the transfer function, frequency characteristics.
Then they resort either to an increase in the bit width or to
a change in the structural scheme. Despite the large num-
ber of publications describing the various structures, their
use is limited by the unique method of calculating each
structure and the extremely limited nomenclature of the
structures offered in the available development systems.

Based on the studied number-theoretic nature of zeros
and poles of digital filters with finite bit capacity, it is pro-
posed to finally calculate the zeros and poles of the digital
filter at the functional synthesis stage, taking into account
the restrictions on the length of the discharge grid. The
next stage of structural synthesis will not distort the results
of functional synthesis.

Studies have shown the relationship between the struc-
ture of the digital filter and the number-theoretical nature
of zeros and poles. It is proposed to generate structural
schemes in accordance with this nature, based on the iden-
tified algebraic features of the matrix description of struc-
tures.

Ill. THEORETICAL AND NUMERICAL ANALYSIS

OF ZEROES AND POLES

A. Algebraic numbers
It is known that if the coefficients of a polynomial

P(z)=) cz" €))
i=0
are elements of the set of rational numbers
c eQ, 2

then the roots of this polynomial belong to the set of alge-
braic numbers

z,eA. ?3)
For subsets of algebraic numbers, the expression
Q=AcAc.cAc..cA cA, 4)

where the indices k of identifiers of subsets are the degrees
of algebraic numbers (the degrees of the minimal or canon-
ical polynomial of the elements of the subset A, ).
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The maximum possible degree of algebraic numbers
that are the roots of a polynomial P(z) is equal to the
degree of the polynomial, but the maximum degree of z,
may be less than the degree of the polynomial.

For example, the roots of a polynomial
P(z)=2"+2z°+z*+1z+1 are algebraic numbers of the

fourth degree 21,2'&4:%(x/g—lij«/zl(x/giS)j . This

polynomial cannot be represented as a product of two pol-
ynomials of the second degree with rational coefficients:

P(2) :(Zz +0_5(1_J§)z+1)(22 +0.5(1+«/§)z+1).

At the same time, the degree of the roots of a polynomial
is two:

(o3 )

z—%+ jg]]z(zz +32+1)(2 —z+1).

B. The algebraic-numerical nature of the zeros and
poles of practicable digital filters

If you do not take into account the effects of finite
word length, then the coefficients a, and b, of the transfer

function

(®)

a,€R,and b, eR, the real and imaginary parts of zeros
Rez,eR, Imz; eR and poles Rez; eR, Imz; eR
are elements of the set of real numbers (R).

All practicable digital filters are characterized by finite
lengths of words, so the coefficients of the transfer func-

tion are elements of the subset Q. of the set of rational

numbers Q. If the coefficients of the digital filter are rep-
resented by a binary additional code in the form with fixed
point, then m is the length of the fractional part of the co-
efficients. In [13] - [15] it was shown that zeros and poles
are elements of a subset of the set of algebraic humbers
A.

C. Topography of zeros and poles in the z-plane for the
digital filters with quantized coefficients

If the conditions a, e Rand a, € R are satisfied, then

any point of the z-plane can be a zero or a pole of the
transfer function (5). In the case of quantization of the
coefficients of the digital filter, only z-plane points whose
coordinates are algebraic numbers can be zeros and poles.
The degree of algebraic numbers in this case is determined



by the structure of the digital filter and may be less than
the order of the filter, as shown above [39], [40].

In [16], and [39], it was shown that for filters imple-
mented in a direct and canonical structure, the degree of
zeros and poles is equal to the filter order. For even-order
filters implemented in a cascade structure, the degree of
zeros and poles is two. For even-order filters implemented
in a parallel structure, the degree of zeros is equal to the
order of the filter, and the degree of poles is two.

The topography of zeros and poles of the digital filter
in the z-plane is determined not only by their degree, but
also by the bit fraction of the fractional part of the coeffi-
cients of the digital filter (coefficients of the minimal pol-
ynomial).
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Fig. 1. Topography of second-degree algebraic numbers
(length of the coefficient fractional part m = 2)

Fig. 2. Topography of the fourth-degree algebraic numbers
(length of the fractional part of the coefficients m = 2)

Figures 1 and 2 show all possible positions of algebraic
numbers of the second and fourth degree with the fraction-
al part of the coefficients m = 2 inside the upper half of the
unit circle of the z-plane.

For algebraic numbers of the second degree, their geo-
metrical place in the z-plane is described in detail in [17].
Unfortunately, such a description for algebraic numbers of
a higher degree could not be obtained. If in the first case
the geometric place is a system of concentric circles with a
definite center on the abscissa axis and a certain radius,
then in the second case the shape of the curves is much
more complicated.

If the coefficients of polynomials are coupled by addi-
tional equations, then several elements are excluded from
the sets of possible values. As a result, the topography
changes. This is described in [18].

D. Relationship between the z-plane and the space of
coefficients of the minimal polynomial

As noted above, the topography of the roots of a mini-
mal second-degree polynomial is well-studied [17]. As a
result, you can search for zeros and poles directly in the z-
plane. For algebraic numbers of a higher degree, analytical
expressions are currently absent. However, in this case, an
indirect approach can be used to search for parameters of
digital filters. To the geometric locus of algebraic numbers
of the corresponding degree, we put in correspondence the
geometric locus of the coefficients of the minimal polyno-
mial.
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Fig. 3. Mapping of a system of circles onto a plane of coeffi-
cients for the second-degree algebraic numbers

Figure 3 shows (for algebraic numbers of the second
degree with m = 3) a map of a system of concentric circles
with a center z,=0.25+ jO on a system of equidistant
lines in the plane of coefficients of the minimal polynomial
2’ —bz-b,. The slope of straight lines is determined by
the center of concentric circles:

b2=—ZObl+(Z§—I’2), (6)

where r? is the square of the radius [13], [14], [17].

For algebraic numbers of a higher degree, we operate
with the values of the coefficients of the minimal polyno-
mial. In this case, it is necessary to solve the problem of
stability of the digital filter [14], [15], [19]. The poles of
such digital filters must be inside the unit circle in the z-
plane, excluding the unit circle, so you must resort to nu-
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merical methods for determining the roots of the polyno-
mial.

IV. SYNTHESIS OF DIGITAL FILTERS
AT THE FUNCTIONAL LEVEL

In view of the above, it is advisable to use the follow-
ing procedure for synthesizing digital filters at the func-
tional level.

1. Execution of the standard procedure of approximation of
the frequency response, as a result of which a set of zeros
and poles is calculated:

7,eC=R? z,eC=R? i=1..,n. @)

2. The choice of the initial value of the degree of zeros and
poles

AlgPw, = Pw,,, AlgPw, =Pw . 8
For even n, it is natural to choose Pw,, = Pw ,=2.

3. The choice of the initial values of the bitness of the frac-
tional part of the coefficients of the minimum polynomials
of degree AlgPw, for zeros (m;) and AlgPw, for poles (mp).
4. Determination of the initial value of zeros with parame-
ters { AlgPw,,m,} and poles {AIgPWp,mp} (for complex
roots, it is necessary to provide complex conjugacy), or the

initial value of the coefficients of the corresponding mini-
mal polynomials.

5. Execution of the search procedure on the sets of zeros
and poles or on the sets of coefficients of the correspond-
ing minimal polynomials.

5.1. When fulfilling the requirements for a digital filter,
complete the procedure.

5.2. The decision to continue the search or its termina-
tion.

6. The decision to increase the length of the fractional part
of the coefficients with the transition to paragraph 7 or to
refuse to further increase these parameters with the transi-
tion to paragraph 9.

7.Increase m, and/or m,.

8. Return to paragraph 6.

9. The decision to increase the degree of zeros and poles
with the transition to paragraph 10 or to refuse further in-
creasing these parameters with the transition to paragraph

10. Increasing the degree of zeros and/or poles.
11. Return to paragraph 6.

12. Deciding to change the requirements for the digital
filter.

13. Return to paragraph 1.

V. THE DESCRIPTION OF THE STRUCTURE OF THE
DIGITAL FILTER WITH THE TOPOLOGICAL MATRIX

As a mathematical model of the digital filter block dia-
gram, it is advisable to use a matrix of transfer coefficients
between the nodes of the block diagram [21]. We will call
such a matrix topological. It most adequately describes the
structural scheme and its properties, including number-
theoretic [14], [15].

St
Y Yy

Fig. 4. The canonical form of the fourth order recursive filter

For example, the block diagram presented in Fig. 4, is
described by the following topological matrix (9)

b z1 0 0o o |o0]
o o] z'}0 o0 |0
o o [ofzo |o
T 7)= .
cans (2) o o lo o5 o 9)
3, a a |a 0 JO
b, b, b, b b 0]

For completeness, you must also specify the number
of input and output nodes. The canonical form of a topo-
logical matrix is considered to be one in which all the el-
ements z* corresponding to the delay blocks are located
above the main diagonal, and the elements corresponding
to the multiplication blocks are located below the main
diagonal. If the circuit is physically realizable (computa-
ble), i.e. does not contain closed contours without delay
elements, then there is a numbering of nodes, in which the
topological matrix is canonical [21].

If the vector Y(z) is a vector of z-transformations of se-
quences of samples calculated at the nodes of the structural
scheme, then we can write the equation

Y(2)=T(z)Y(z)+1X(2), (10)

where | is a vector, all elements of which are zero, except
for the element with the number equal to the number of the
input element. This item is equal to 1. Equation (10) can be
converted to

Y(2)=(E-T(2)) " 1X(2) an
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where E is the identity matrix. Matrix

H(z)=(E-T(z))"

- is the matrix of transfer functions H;(z) (i, j - numbers of
the output and input nodes, respectively).

VI. THE RELATIONSHIP BETWEEN THE THIN
STRUCTURE OF THE TOPOLOGICAL MATRIX AND NUMBER-
THEORETICAL PROPERTIES OF ZEROES AND NODES

In [14], [15], [22], [23] it was shown that the de-
gree of poles is determined by the structure of the
canonical form of the topological matrix for digital
filters, the order of which is equal to the number of
delay blocks. In such a matrix, square submatrices
can be distinguished, the elements of the main diago-
nals of which are the elements of the main diagonal
of the topological matrix, the elements z* being the
last elements of the first row of the sub-matrix. Clus-
ters can be formed from submatrices. Any submatrix in-
cluded in this cluster has common elements with at least
one submatrix entering this cluster and has no common
elements with submatrices belonging to other clusters. If a
cluster combines r submatrices, then r poles of r-th degree
correspond to this cluster. For example [38], in the topo-
logical matrix (9) there is one cluster that combines four
submatrices. Therefore, the degree of all poles of the ca-
nonical form of a fourth-order recursive digital filter is
four. And the degree of poles of the cascade structure of a
fourth-degree digital filter (Fig. 5) is two. The topological
matrix of such a structure has the form

(12)

0o z]o0]o 0]
0 0| zj 0 0
a21 a11 O 0 0
b b, 0 0
TCHAULZ(Z): 021 gll 001 0 0 : (13)
0 0 0 O 0
0 0 0 1 0
0 0 0 0 0]

Unfortunately, it is not possible to establish a connec-
tion between the structure of the topological matrix and the
degree of zeros. So far, the following approach is proposed
to determine the degree of zeros for a particular structure.
If a polynomial with rational coefficients in the numerator
of the transfer function can have an algebraic number of r-
th degree as its root, then the corresponding zero is r-th
degree zero. However, it is difficult to solve this problem.
It is easier to use the following approach.

If an algebraic number of r-th degree, being the root of
the polynomial of the numerator of the transfer function,
leads to the fact that the coefficients of this polynomial are
not rational numbers, then the zeros of such a digital filter
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cannot have r-th degree. The problem is to determine the
maximum degree of zeros for this structure.

Fig. 5. Cascade form of fourth order IR filter

VII. GENERATION OF DIGITAL FILTER STRUCTURES

In [14], [15], [24] - [26], it was shown that by generating
the canonical forms of a topological matrix of order N with
all possible admissible coefficients and specifying the
numbers of the input (inp) and output (out) nodes, it is pos-
sible to obtain all the structures of physically realizable
digital filters with N nodes.As an example, consider the
option for which N=5, inp=3, out=4:

0 z' 0 0 0
¢, 0 0 0 z*

T(z%)=|c, ¢, 0 0 0 (14)
Cu Cp Cy 0 0
C51 C52 053 C54 0

This matrix corresponds to the digital filter, a block di-
agram of which is shown in Fig. 6.

Fig. 6. Example of generated digital filter structure

The number of multiplication blocks in the generated
structures exceeds the number of degrees of freedom (the
number of transfer function coefficients). In [27] - [29],
methods of synthesizing new canonical second order struc-
tures are presented, based on the generation of all possible
structures with a given number of nodes, choosing a set
consisting of five coefficients, zeroing the remaining coef-
ficients, discarding trivial structures.



In [31], [32] a different approach was applied. Redun-
dancy is used to reduce the bitness of the coefficients (an
increased number of multiplication blocks is exchanged for
a decrease in the word length).

We will demonstrate this approach on the example of
the redundant structure of Fig. 7. Fig. 8 shows the trans-
formed structure without multipliers.
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toward the least significant bits

Fig. 8. A multiplierless structure equivalent to the structure
in Fig. 7
To estimate the level of rounding noise, a representa-
tion of the structure in the state space is usually used. In
[33] - [35], rounding noises of the results of arithmetic
operations in the generated structure are estimated by a
topological matrix.

In [36], [37] a method for estimating the structural
complexity of the generated structures is presented.

VIII.

An approach to the synthesis of recursive digital filters
with finite word length is proposed, taking into account the
algebraic-numeric nature of zeros and poles, the algebraic
properties of the matrix structure description. The approach
allows one to calculate zeros and poles, taking into account
the restrictions on the length of the discharge grid, even
before the stage of structural synthesis, and to generate the
structure of the digital filter taking into account the num-
ber-theoretic properties of the transfer function. Further
research involves the development of effective means of

CONCLUSION

functional and structural synthesis in the framework of the
described approach.
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