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Abstract — Design of recursive digital filters involves sequen-
tial execution of the stages of functional and structural syn-
thesis. At the stage of functional synthesis, the zeros and 
poles of the transfer function are calculated, which satisfy 
the specification of the requirements for the characteristics 
of the filter. At the stage of structural synthesis, a block dia-
gram is formed. At this stage, the calculation of the structure 
coefficients (parametric synthesis) and the quantization of 
coefficients are performed. With the traditional approach at 
the stage of functional synthesis, the effects of the finite word 
length are not taken into account. At the same time, the stage 
of structural synthesis leads to distortion of the exact value of 
the coefficients of the digital filter, distortion of the zeros and 
poles of the digital filter, distortion of the transfer function, 
and frequency response. Therefore, it is necessary to either 
increase the bit depth or change the structural scheme. De-
spite a large number of publications describing the various 
structures, their applications are limited by the unique calcu-
lation method for each structure and by the extremely short 
range of the structures offered in available developed sys-
tems. This paper is an analytical report, which describes a 
new approach to the synthesis of recursive digital filters with 
finite word length. Based on the studied number-theoretic 
nature of zeros and poles of the digital filters with limited 
word length, it is proposed to finally compute the zeros and 
poles of the digital filters at the stage of functional synthesis, 
considering the limitations on the length of the words. The 
next step of structural synthesis will not distort the results of 
functional synthesis. The completed studies have shown the 
connection between the structure of the digital filters and the 
number-theoretic nature of zeros and poles. It is proposed to 
generate structural schemes by this nature, based on the 
revealed algebraic features of the matrix description of 
structures. 
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I. INTRODUCTION 
Despite the long history [1] - [3], the problem of the 

synthesis of recursive digital filters, taking into account the 
finite digit capacity of the numbers involved in the calcula-
tions, is far from the final solution. If one does not take 
into account the finite accuracy of calculations, the synthe-
sis of recursive filters is well studied, described and im-
plemented in development systems [4] - [6].  

In the absence of stringent requirements for the charac-
teristics of the digital filter, the problem of synthesis and 
realization is rather simply solved, and under the condition 
of limited capacity. With the complication of the require-
ments for the characteristics of the digital filter, a large 
number of problems manifest themselves, which prove to 
be insurmountable in practical implementation.  

This circumstance leads to the fact that developers 
abandon attempts to realize the advantages of recursive 
digital filters over FIR filters in terms of the amount of 
computing resources. To confirm this fact, we give an ex-
ample. For implementation on programmable logic circuits 
(FPGAs), Altera Corporation offered developers a design 
tool such as digital filter compiler with infinite impulse 
response IIR Compilator. However, in 2003, Altera 
stopped supporting this product [7]. 

The reason for the difficulties in the synthesis of IIR 
digital filters with finite word length is the insufficient 
depth of the study of the fundamental features of computa-
tional processes in recursive digital filters, the lack of de-
velopment tools that take into account these features. 

In the series of publications, which include [8] - [11], a 
new approach to the synthesis of IIR digital filters with 
finite word length is proposed, in which attempts are made 
to overcome the mentioned difficulties of synthesis. 

This paper is an analytical review of papers describing 
this new approach. 

By the way, it makes sense to note the subtlety in the 
use of terminology related to IIR filters. It is believed that 
the terms recursive digital filter and the digital filter with 
infinite impulse response are equivalent. However, when 
the filter is implemented in fixed-point arithmetic, it is 
impossible to represent numbers whose absolute value is 
too small. Therefore, the length of the impulse response 
will be either finite (however greater than the filter order) 
or infinite. Nevertheless, this infinity will exist due to the 
presence of parasitic oscillations of the limit cycle. 

Therefore, it appears that the term recursive filter is 
more accurate and will be used in this work. 
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II. APPROACHES TO THE SYNTHESIS
 OF RECURSIVE DIGITAL FILTERS  

WITH FINITE WORD LENGTH 
In the traditional approach to the synthesis of recursive 

filters, one can single out [4] - [6] such stages as functional 
synthesis, structural synthesis, parametric synthesis, quan-
tization of coefficients.In functional synthesis, the transfer 
function (it’s zeros and poles) is calculated. At structural 
synthesis stage, the block diagram is chosen. Parametric 
synthesis is devoted to the calculation of the coefficients of 
the selected structure without taking into account the finite 
word length. 

The latter operation leads to the distortion of the exact 
value of the coefficients of the digital filter, to the distor-
tion of the zeros and poles of the digital filter, to the distor-
tion of the transfer function, frequency characteristics. 
Then they resort either to an increase in the bit width or to 
a change in the structural scheme. Despite the large num-
ber of publications describing the various structures, their 
use is limited by the unique method of calculating each 
structure and the extremely limited nomenclature of the 
structures offered in the available development systems. 

Based on the studied number-theoretic nature of zeros 
and poles of digital filters with finite bit capacity, it is pro-
posed to finally calculate the zeros and poles of the digital 
filter at the functional synthesis stage, taking into account 
the restrictions on the length of the discharge grid. The 
next stage of structural synthesis will not distort the results 
of functional synthesis.  

Studies have shown the relationship between the struc-
ture of the digital filter and the number-theoretical nature 
of zeros and poles. It is proposed to generate structural 
schemes in accordance with this nature, based on the iden-
tified algebraic features of the matrix description of struc-
tures. 

III. THEORETICAL AND NUMERICAL ANALYSIS 
OF ZEROES AND POLES 

A. Algebraic numbers 
It is known that if the coefficients of a polynomial 
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are elements of the set of rational numbers 

ic ∈Q , (2) 

then the roots of this polynomial belong to the set of alge-
braic numbers 

iz ∈A . (3) 

For subsets of algebraic numbers, the expression 

1 2 ... ...k n= ⊂ ⊂ ⊂ ⊂ ⊂ ⊂Q A A . A A A., (4) 

where the indices k of identifiers of subsets are the degrees 
of algebraic numbers (the degrees of the minimal or canon-
ical polynomial of the elements of the subset kA ). 

The maximum possible degree of algebraic numbers 
that are the roots of a polynomial ( )P z  is equal to the 
degree of the polynomial, but the maximum degree of iz
may be less than the degree of the polynomial. 

For example, the roots of a polynomial 
( ) 4 3 2

1P 1z z z z z= + + + +  are algebraic numbers of the 

fourth degree ( )1,2,3,4
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polynomial cannot be represented as a product of two pol-
ynomials of the second degree with rational coefficients: 

( ) ( )( ) ( )( )2 2
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At the same time, the degree of the roots of a polynomial 
is two:  
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B. The algebraic-numerical nature of the zeros and 
poles of practicable digital filters 

If you do not take into account the effects of finite 
word length, then the coefficients ia  and ib  of the transfer 
function 
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ia ∈R , and ib ∈R , the real and imaginary parts of zeros 
Re ziz ∈R , Im ziz ∈R  and poles Re piz ∈R , Im piz ∈R
are elements of the set of real numbers ( R ). 

All practicable digital filters are characterized by finite 
lengths of words, so the coefficients of the transfer func-
tion are elements of the subset mQ  of the set of rational 
numbers Q . If the coefficients of the digital filter are rep-
resented by a binary additional code in the form with fixed 
point, then m is the length of the fractional part of the co-
efficients. In [13] - [15] it was shown that zeros and poles 
are elements of a subset of the set of algebraic numbers 
A .

C. Topography of zeros and poles in the z-plane for the 
digital filters with quantized coefficients 

If the conditions ia ∈R and ia ∈R  are satisfied, then 
any point of the z-plane can be a zero or a pole of the 
transfer function (5). In the case of quantization of the 
coefficients of the digital filter, only z-plane points whose 
coordinates are algebraic numbers can be zeros and poles. 
The degree of algebraic numbers in this case is determined 
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by the structure of the digital filter and may be less than 
the order of the filter, as shown above [39], [40]. 

In [16], and [39], it was shown that for filters imple-
mented in a direct and canonical structure, the degree of 
zeros and poles is equal to the filter order. For even-order 
filters implemented in a cascade structure, the degree of 
zeros and poles is two. For even-order filters implemented 
in a parallel structure, the degree of zeros is equal to the 
order of the filter, and the degree of poles is two. 

The topography of zeros and poles of the digital filter 
in the z-plane is determined not only by their degree, but 
also by the bit fraction of the fractional part of the coeffi-
cients of the digital filter (coefficients of the minimal pol-
ynomial). 

Fig. 1. Topography of second-degree algebraic numbers 
 (length of the coefficient fractional part m = 2) 

Fig. 2. Topography of the fourth-degree algebraic numbers 
(length of the fractional part of the coefficients m = 2) 

Figures 1 and 2 show all possible positions of algebraic 
numbers of the second and fourth degree with the fraction-
al part of the coefficients m = 2 inside the upper half of the 
unit circle of the z-plane. 

For algebraic numbers of the second degree, their geo-
metrical place in the z-plane is described in detail in [17]. 
Unfortunately, such a description for algebraic numbers of 
a higher degree could not be obtained. If in the first case 
the geometric place is a system of concentric circles with a 
definite center on the abscissa axis and a certain radius, 
then in the second case the shape of the curves is much 
more complicated. 

If the coefficients of polynomials are coupled by addi-
tional equations, then several elements are excluded from 
the sets of possible values. As a result, the topography 
changes. This is described in [18]. 

D. Relationship between the z-plane and the space of 
coefficients of the minimal polynomial 

As noted above, the topography of the roots of a mini-
mal second-degree polynomial is well-studied [17]. As a 
result, you can search for zeros and poles directly in the z-
plane. For algebraic numbers of a higher degree, analytical 
expressions are currently absent. However, in this case, an 
indirect approach can be used to search for parameters of 
digital filters. To the geometric locus of algebraic numbers 
of the corresponding degree, we put in correspondence the 
geometric locus of the coefficients of the minimal polyno-
mial. 

(a) 

(b) 
Fig. 3. Mapping of a system of circles onto a plane of coeffi-

cients for the second-degree algebraic numbers 

Figure 3 shows (for algebraic numbers of the second 
degree with m = 3) a map of a system of concentric circles 
with a center 0 0.25 0z j= +  on a system of equidistant 
lines in the plane of coefficients of the minimal polynomial 

2
1 2z b z b− − . The slope of straight lines is determined by 

the center of concentric circles: 

( )2 2
2 0 1 0b z b z r= − + − , (6) 

where 2r  is the square of the radius [13], [14], [17]. 

For algebraic numbers of a higher degree, we operate 
with the values of the coefficients of the minimal polyno-
mial. In this case, it is necessary to solve the problem of 
stability of the digital filter [14], [15], [19]. The poles of 
such digital filters must be inside the unit circle in the z-
plane, excluding the unit circle, so you must resort to nu-
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merical methods for determining the roots of the polyno-
mial. 

IV. SYNTHESIS OF DIGITAL FILTERS 
AT THE FUNCTIONAL LEVEL 

In view of the above, it is advisable to use the follow-
ing procedure for synthesizing digital filters at the func-
tional level. 

1. Execution of the standard procedure of approximation of
the frequency response, as a result of which a set of zeros 
and poles is calculated: 

2
ziz ∈ =C R , 2

piz ∈ =C R , 1,...,i n= . (7) 

2. The choice of the initial value of the degree of zeros and
poles 

0z zAlgPw Pw= , 0p pAlgPw Pw= . (8) 

For even n, it is natural to choose 0 0 2z pPw Pw= = . 

3. The choice of the initial values of the bitness of the frac-
tional part of the coefficients of the minimum polynomials 
of degree AlgPwz for zeros (mz) and AlgPwp for poles (mp). 

4. Determination of the initial value of zeros with parame-
ters { },z zAlgPw m  and poles { },p pAlgPw m  (for complex 
roots, it is necessary to provide complex conjugacy), or the 
initial value of the coefficients of the corresponding mini-
mal polynomials. 

5. Execution of the search procedure on the sets of zeros
and poles or on the sets of coefficients of the correspond-
ing minimal polynomials. 

5.1. When fulfilling the requirements for a digital filter, 
complete the procedure. 

5.2. The decision to continue the search or its termina-
tion. 

6. The decision to increase the length of the fractional part
of the coefficients with the transition to paragraph 7 or to 
refuse to further increase these parameters with the transi-
tion to paragraph 9. 

7. Increase zm and/or pm . 

8. Return to paragraph 6.

9. The decision to increase the degree of zeros and poles
with the transition to paragraph 10 or to refuse further in-
creasing these parameters with the transition to paragraph 
12. 

10. Increasing the degree of zeros and/or poles.

11. Return to paragraph 6.

12. Deciding to change the requirements for the digital
filter. 

13. Return to paragraph 1.

V. THE DESCRIPTION OF THE STRUCTURE OF THE 
DIGITAL FILTER WITH THE TOPOLOGICAL MATRIX 

As a mathematical model of the digital filter block dia-
gram, it is advisable to use a matrix of transfer coefficients 
between the nodes of the block diagram [21]. We will call 
such a matrix topological. It most adequately describes the 
structural scheme and its properties, including number-
theoretic [14], [15]. 
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Fig. 4. The canonical form of the fourth order recursive filter 

For example, the block diagram presented in Fig. 4, is 
described by the following topological matrix (9) 

1
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For completeness, you must also specify the number 
of input and output nodes. The canonical form of a topo-
logical matrix is considered to be one in which all the el-
ements z-1 corresponding to the delay blocks are located 
above the main diagonal, and the elements corresponding 
to the multiplication blocks are located below the main 
diagonal. If the circuit is physically realizable (computa-
ble), i.e. does not contain closed contours without delay 
elements, then there is a numbering of nodes, in which the 
topological matrix is canonical [21]. 

If the vector Y(z) is a vector of z-transformations of se-
quences of samples calculated at the nodes of the structural 
scheme, then we can write the equation   

( ) ( ) ( ) ( )z z z X z= +Y T Y I , (10) 

where I is a vector, all elements of which are zero, except 
for the element with the number equal to the number of the 
input element. This item is equal to 1. Equation (10) can be 
converted to   

( ) ( )( ) ( )1
z z X z

−
= −Y E T I

, (11) 
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where E is the identity matrix. Matrix 

( ) ( )( ) 1
z z

−
= −H E T   (12)

- is the matrix of transfer functions Hij(z) (i, j - numbers of 
the output and input nodes, respectively). 

VI. THE RELATIONSHIP BETWEEN THE THIN 
STRUCTURE OF THE TOPOLOGICAL MATRIX AND NUMBER-

THEORETICAL PROPERTIES OF ZEROES AND NODES 
In [14], [15], [22], [23] it was shown that the de-

gree of poles is determined by the structure of the 
canonical form of the topological matrix for digital 
filters, the order of which is equal to the number of 
delay blocks. In such a matrix, square submatrices 
can be distinguished, the elements of the main diago-
nals of which are the elements of the main diagonal 
of the topological matrix, the elements z-1 being the 
last elements of the first row of the sub-matrix. Clus-
ters can be formed from submatrices. Any submatrix in-
cluded in this cluster has common elements with at least 
one submatrix entering this cluster and has no common 
elements with submatrices belonging to other clusters. If a 
cluster combines r submatrices, then r poles of r-th degree 
correspond to this cluster. For example [38], in the topo-
logical matrix (9) there is one cluster that combines four 
submatrices. Therefore, the degree of all poles of the ca-
nonical form of a fourth-order recursive digital filter is 
four. And the degree of poles of the cascade structure of a 
fourth-degree digital filter (Fig. 5) is two. The topological 
matrix of such a structure has the form 
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Unfortunately, it is not possible to establish a connec-
tion between the structure of the topological matrix and the 
degree of zeros. So far, the following approach is proposed 
to determine the degree of zeros for a particular structure. 
If a polynomial with rational coefficients in the numerator 
of the transfer function can have an algebraic number of r-
th degree as its root, then the corresponding zero is r-th 
degree zero. However, it is difficult to solve this problem. 
It is easier to use the following approach. 

If an algebraic number of r-th degree, being the root of 
the polynomial of the numerator of the transfer function, 
leads to the fact that the coefficients of this polynomial are 
not rational numbers, then the zeros of such a digital filter 

cannot have r-th degree. The problem is to determine the 
maximum degree of zeros for this structure. 

z-1 z-1

-a11 -a21

b11b01
b

21
12

3

4

+ +

z-1 z-1

-a12 -a22

b12b02

b
22

56

7

8

+ +
Y(z)

X(z)

Fig. 5. Cascade form of fourth order IIR filter 

VII. GENERATION OF DIGITAL FILTER STRUCTURES 

In [14], [15], [24] - [26], it was shown that by generating 
the canonical forms of a topological matrix of order N with 
all possible admissible coefficients and specifying the 
numbers of the input (inp) and output (out) nodes, it is pos-
sible to obtain all the structures of physically realizable 
digital filters with N nodes.As an example, consider the 
option for which N=5, inp=3, out=4: 
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This matrix corresponds to the digital filter, a block di-
agram of which is shown in Fig. 6. 

Fig. 6. Example of generated digital filter structure 

The number of multiplication blocks in the generated 
structures exceeds the number of degrees of freedom (the 
number of transfer function coefficients). In [27] - [29], 
methods of synthesizing new canonical second order struc-
tures are presented, based on the generation of all possible 
structures with a given number of nodes, choosing a set 
consisting of five coefficients, zeroing the remaining coef-
ficients, discarding trivial structures. 
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In [31], [32] a different approach was applied. Redun-
dancy is used to reduce the bitness of the coefficients (an 
increased number of multiplication blocks is exchanged for 
a decrease in the word length). 

We will demonstrate this approach on the example of 
the redundant structure of Fig. 7. Fig. 8 shows the trans-
formed structure without multipliers. 

+ z-1

5 1
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z-1 +

2
+ 3

c41

c32
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c54
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c21 c31 c43
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+
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c65 c61 c64 c62
c63

6

Fig. 7. Structure with excess multipliers 
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toward the least significant bits

0.25

Transmission frame of inverted bits 
shifted by two bits toward the least 
significant bits

Fig. 8. A multiplierless structure equivalent to the structure 
in Fig. 7 

To estimate the level of rounding noise, a representa-
tion of the structure in the state space is usually used. In 
[33] - [35], rounding noises of the results of arithmetic 
operations in the generated structure are estimated by a 
topological matrix. 

In [36], [37] a method for estimating the structural 
complexity of the generated structures is presented. 

VIII. CONCLUSION

An approach to the synthesis of recursive digital filters 
with finite word length is proposed, taking into account the 
algebraic-numeric nature of zeros and poles, the algebraic 
properties of the matrix structure description. The approach 
allows one to calculate zeros and poles, taking into account 
the restrictions on the length of the discharge grid, even 
before the stage of structural synthesis, and to generate the 
structure of the digital filter taking into account the num-
ber-theoretic properties of the transfer function. Further 
research involves the development of effective means of 

functional and structural synthesis in the framework of the 
described approach. 
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