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Abstract — The process of analogue circuit optimisation is
mathematically defined as a controllable dynamic system. In
this context the minimisation of the processor time of
designing can be formulated as a problem of time
minimisation for transitional process of dynamic system. A
special control vector that changes the internal structure of
the main equations of optimisation procedure serves as a
principal tool for searching the best strategies of the
optimisation process. The creation of the best strategy of the
optimisation having the minimum processor time leads to
search of the structure of control vector providing the
minimum of a special functional that can be defined as CPU
time. In this case a well-known maximum principle of
Pontryagin is the best theoretical approach for finding of the
optimum structure of control vector. Practical approach for
realization of the maximum principle is based on the analysis
of behavior of a Hamiltonian for various strategies of
optimisation. The possibility of applying the maximum
principle to the problem of optimisation of electronic circuits
is analyzed in detail. It is shown that in spite of the fact that
the problem of optimisation is formulated as a nonlinear
task, and the maximum principle in this case isn't a sufficient
condition for obtaining a minimum of the functional, it is
possible to obtain the decision in the form of local minima.
The relative acceleration of the CPU time for the best
strategy found by means of maximum principle compared
with the traditional approach is equal two to three orders of
magnitude. A new theoretical result is obtained.

Keywords — circuit optimisation, controllable dynamic
system, optimisation strategies, maximum principle of
Pontryagin.

. INTRODUCTION

To improve the overall quality of electronic circuit
designs, it is very important to reduce their design time.
Many works devoted to this problem focus on how to
reduce the number of operations when solving two main
problems: circuit analysis and numerical optimisation. By
solving these problems successfully, one can reduce the
total time required for analog circuit optimisation and this
fact serves as a basis for improving design quality.

The methods used to analyse complex systems are
being improved continuously. Some well-known ideas
related to the use of a method of sparse matrixes [1], [2]
and decomposition methods [3]-[5] are used for the
reduction of time for the analysis of circuits. Some
alternative methods such as homotopy methods [6] were
successfully applied to circuit analysis.

Practical methods of optimisation were developed for
circuit designing, timing, and area optimisation [7], [8].
However, classical deterministic optimisation algorithms
may have a number of drawbacks: they may require that a
good initial point be selected in the parameter space, they
may reach an unsatisfactory local minimum, and they
require that the cost function be continuous and
differentiable. To overcome these issues, special methods
were applied to determine the initial point of the process by
centering [9] or applying geometric programming methods
[10].

A more general formulation of the circuit optimisation
problem was developed on a heuristic level some decades
ago [11]. This approach ignored Kirchhoff’s laws for all or
part of a circuit during the optimisation process. The
practical aspects of this idea were developed for the
optimisation of microwave circuits [12] and for the
synthesis of high-performance analog circuits [13] in an
extreme case where all the equations of the circuit were not
solved during the optimisation process.

In work [14] the problem of circuit optimisation is
formulated in terms of the theory of optimal control. Thus,
the process of circuit optimisation was generalized and
defined as the dynamic controllable system. In this case,
the basic element is the control vector that changes the
structure of the equations of the system of optimisation
process. Thus, there is a set of strategies of optimisation
that have different number of operations and different
computing times. The introduction and analysis of the
function of Lyapunov of the optimisation process [15],
[16] allows comparison of various strategies of
optimisation and choosing the best of them having
minimum processor time. At the same time, the problem of
searching for the optimal strategy and the corresponding
optimal trajectory can be solved most appropriately within
the maximum principle of Pontryagin [17].

The main complexity of application of the maximum
principle consists of the search of initial values for
auxiliary variables at the solution of the conjugate system
of equations. Application of the maximum principle in case
of linear dynamic systems is based on the creation of an
iterative process [18], [19].

In case of nonlinear systems, the convergence of this
process is not guaranteed. However, application of the
additional approximating procedures [20], [21] allows
constructing sequence of the solutions converging to a
limit under certain conditions.
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The first step in the problem of possibility of
application of maximum principle for circuit optimisation
was presented in [22]. In the present work, the solution of
the problem is presented for N-dimensional case.

Il.  THEORETICAL BASIS

The following question is interesting, whether it is
possible to extend the obtained analytical result to the
numerical solution of the optimisation problem for
nonlinear circuit of any dimension. Let's consider the
problem of optimisation of a nonlinear circuit with two
nodes shown in Fig. 1.
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Fig. 1. Nonlinear two-node voltage divider

The given circuit is a nonlinear divider of voltage.
There are three independent parameters (K=3) and two
dependent ones (M=2). The nonlinear element has the

following dependency: y., =Y, + a(V1 -V, )2 . We
define the voltage V, as 1, and the variables Xy, Xp, X3, Xq,
and xs as: X2 = y,, X2 = y,, X2 =Y,, X, =V,, and

s =V, . The vector of the phase variables of the circuit

is X € R®. In this case the nonlinear element is defined

by the following expression: Y, =Y, + a(X4 —Xs )2.
Let's determine cost function of process of
optimization by the formula:
C(X)=(xs —w)*, 1)

where w — the required value of output voltage. Following
theoretical bases that were developed in [14], we formulate
the problem for circuit optimisation as a task of search of
the optimisation strategy with minimum possible CPU
time. For this purpose, we define the functional, which is
subject to minimisation, by the following expression:

:} f,(X) dt,

(o}

)

where f, (X) is the function that is conditionally

determining the density of number of arithmetic operations
in a unit of time ¢. In that case, the integral (2) defines total
number of operations necessary for circuit optimisation
and is proportional to the total CPU time.

The structure of function f,(X) cannot be defined.

However, we can compute CPU time using the
capabilities of the compiler. We will further identify the
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integral (2) with CPU time, and therefore, the problem of
minimisation of CPU time corresponds to a problem of
minimisation of the integral (2).

The model of a circuit is defined by the following
system:
J(x

gl(x)z(l_ X4)X1 [yo +a X4X22 =0
3)

X)= [yo +a(x, —x kx —X%x2 =0

The system of equations of the optimisation procedure
can be presented in the following form:

dx.
L= f(X,U), i=1,2,...,N 4
4 = i) (@)
where
f,(X u):-i F(X,U).i=1,2,K
L X '
(5)
f.(X,U)=-u KfiFOgu)+a_wa%,hK+L“ﬂN

i
where F(X,U) is the generalized cost function of the
optimisation process defined by expression:

F(X,U)=C(X)+ > u,0%(X). ®)

a; for i=K+1,..

increment of the value of the dependent variables in the
course of optimization and computed by the formula:

a; = i[ni (X‘”l)— X ]

and 7, (X) is the implicit function defining the component

.,V is the additional parameter defining an

s
i

U]

number 7 of a vector X at the solution of system (3), T is
a step of integration and s is the step number of the
procedure of the integration of system (4).

Let's obtain the main expressions corresponding to the

maximum principle. The conjugate system of the equations
for the additional variables y; has a form:

N, 5f, (X, U)
_ZT'

k=1 i

dy; _

8
It ®)

K

The Hamiltonian is determined by the following
formula:

H(X,'¥,U) Z%

K
Z‘//i :
i-1

)

Zw.

i=K+1



where the first and second sums are defined by the
following expressionS'
)2

gmﬂ( Z% 3 ;%Zw

§x

! (10)
_Z‘/’i i (va): _Z(l_ui—r( )‘/’iai
N L A s(g(X)Y
iZK;+1Ui_Kl//i|:5Xi +§uk 5

As a result the Hamiltonian can be expressed as follows:

H(X,¥,U)=h, +h,+h +h, (11)

where /. is the part of a Hamiltonian that does not depend
on the control vector,

h (X T)_ Z‘/’. 7_"‘ Z‘//.

i=K+1

(12)

Other components of Hamiltonian depend on the control
vector U:

hy(X, ¥, U)= (13)

Zul kWi »

i=K+1

(14)

£ g o

Let's designate the sum of these three components as
h, (X, ¥, U) (h=he+hy+hy). Formulas (1)-(15) define the

process of system optimisation and the process of
computing a Hamiltonian in case of K independent
variables and M dependent variables (N=K+M). In the case
of the circuit presented in Fig. 1, formulas are used for K=3
and M=2. In this case the control vector of U contains two
components (uj, Up). The supremum of the function
h, (X, ¥, U) in the parameter U will be designated Hpax:

z ul K‘//I

i=K+1

S, (gg)(( i

k=1 i

H o X, ¥) =suph, (X, ¥, U) (16)

ueU
For the circuit in Fig. 1 this function is defined by the
following expression:

Hmax(x’q’):
The structure of the control vector providing this

maximum in each point of optimisation process represents
the result of the use of the maximum principle.
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The analysis of the process of optimisation for a circuit
with two nodes allows for the finding of the optimum
structure of the control vector. The possibility of applying
the maximum principle of Pontryagin to the problem of
optimisation of electronic circuits is analysed. It is shown
that in spite of the fact that the problem of optimisation is
formulated as a nonlinear task, and the maximum principle
in this case isn't a sufficient condition for obtaining a
maximum of the functional, it is possible to obtain the
decision in the form of local minima. Local minima of the
functional, which is defined as the processor time
necessary for the procedure of optimisation, provide a
rather low value of the functional. The relative acceleration
of the CPU time for the best strategy found by means of
maximum principle compared with the traditional
approach is equal two to three orders of magnitude.

NUMERICAL RESULTS

The behaviour of Hamiltonian for four possible options
of the control vector U: (00), (01), (10), and (11) with the

correct initial value of an auxiliary vector ¥ ,
(¥, =(0.3-1.85-0.35,-1.9,0.32,2,5)) is presented in Fig. 2.

60 T
msec

W‘\O =-0.5
W,,=-0.95

Wao =-20
754 g, =-1.12

Y, =1.0
-100+

Fig. 2. Time dependency of functions H o), Ho1), Hio) Hey
for correct value of parameter ¥

The value of ¥ . has been obtained by the additional

optimising procedure on the basis of a gradient method for
the following initial point in process of designing X%
( Xpg =1.0, X, =1.0, X3¢ =1.0, X4o = -1.5, X5y = -1.6).
Four possible combinations of the components of the
control vector U define four various dependencies for
Hamiltonian:  (H 0y H o1 Haoy» Haagy ) - The

Hamiltonian corresponding to the control vector (11) has
the greatest value of all possible. Therefore, the optimum
trajectory corresponds to this vector and defines the first
part of a trajectory in the space of parameters. Some two-
dimensional projections of a trajectory of optimisation
process in the space of variables X are presented in Fig. 3.
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Fig. 3. Projections of trajectory of optimisation process with
initial point X% (x, =1 %, =1 %, =1 X, = -15,%;, =—1.6)

A part of the trajectory from point S to point S,
corresponds to the control vector U=(11). Then, at a time
point of 5.753 msec, which corresponds to 121 steps of
integration of the system (4), the Hamiltonian
corresponding to the strategy with the control vector (00)
becomes the greatest of all, and at this moment the vector
(00) becomes the optimum control vector. The trajectory,
including the jump and the current point of the
optimisation process, instantly moves to the final point of
the solution of a problem of F.

The data of optimisation process for the presented
circuit for four strategies of structural basis and the same
initial point X° are provided in Table 1 for comparison.

Table 1
Data of all strategies of structural basis

Fig. 4. Time dependency of functions H ), Ho1), H(10), Hiy
for other correct value of parameter
¥, =(0.42,-0.8,-0.625,-1.99,0.25)

In this case the following correct value of an auxiliary
vector ¥, =(0.42,-0.8,-0.625,-1.99,0.25) providing

the minimum value of processor time has been obtained. In
this example, the optimisation procedure is defined by the
control vector (11) from T=0 to T=1.761msec because the
Hamiltonian of Hyy has the maximum value for this
control vector of the four possible. Then, at a time of
T=1.761 msec, which corresponds to the 35th step of
process of integration of system (4) the Hamiltonian
corresponding to the control vector (00) has the maximum
value (Hpo>=Hy) and the switching to the TSO is
observed. The movement corresponding to the strategy
(00) is carried out on one step of integration and the
current point of the optimisation process moves to the final
point of F with the given accuracy. It is clear from the
behaviour of the projections of the optimisation trajectory
shown in Fig. 5.

N |Control |Iterations | Total CPU

vector |[number [time (sec)
1 (00)] 116973 16.081
2| (01)[ 139143 8.897
3] (10) 133154 11.241
4] (11)] 170953 7.934

The most rapid strategy is MTSO, which corresponds
to the control vector (11), has processor time of 7.934 sec.
The optimum strategy considered above and found by the
maximum principle has a gain in time of 1379 times that of
strategy (11) and 2795 times that of the TSO with U= (00).

The behaviour of the Hamiltonian that corresponds to
another choice for the initial point of optimisation process

of circuit X% ( X;5=1.0, X50 = 1.0, X5 =1.0, X4 = -2.5,

Xsq = -2.5) for four possible values of the control vector
U: (00), (01), (10), and (11) is shown in Fig. 4.
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X4 Xs
1.07 1.0t
F F
T. ! : !
0 05 1.0 X, 0 055 1.0 X,
-1.01 (00) -1.01 (00)
Sw Sw
20 (11) 2071 (11)
S S

Fig. 5. Projections of trajectory of optimisation process with
initial point X% (x,, =1, %, =1, X5, =1,X,, = —2.5,%;, = ~2.5)

It is important to emphasize that the numerical
algorithm automatically switches from one strategy to
another on the basis of ratio (16), corresponding to the
maximum principle. It would be desirable to note that the
obtained decision is not the unique local minimum of the
target function of T. Other local minimum has been

reached with the other vector ¥ .



The behaviour of the function of Hamilton for the same
initial point of the optimisation process of the circuit XO:

(o =1 =T %o =1.Xig ==25.X4 ==258)  pt  containing
other initial value for auxiliary vector W is presented in
Fig. 6. The correct value of ¥ obtained by the additional

optimising procedure is next
¥, =(0.1,-0.02,-0.5,-0.2,0.6) . In this case the

other strategy is optimal one.

4 Il| Y, =01
300 4] | Y, ==0.02
W3O =_05
Y,=-02
200 v =06
100 ]
0 Tt ——— i
\/ 0.5 1.0 15 2.0 2.5 30 T
H(OW) msec
-100 T

Fig. 6. Time dependency of functions Hqg), Ho1), H(10), Hey
for other correct value of parameter
¥,. =(0.1,-0.02,-0.5,-0.2,0.6)

An additional optimisation by means of parameter lI’0

leads to other local minimum that is visible from the
obtained dependencies. The Hamiltonian corresponding to
the strategy with control vector (10) accepts the maximum
value and this strategy is the first part of the optimum
strategy.

The Hamiltonian corresponding to TSO with the
control vector (00) is greater than for all other strategies
from the point corresponding to the 38th step of
integration, and a switching to TSO takes place. That is
also clear from the behaviour of projections of the
optimisation trajectory in Fig. 7.

1.07 101
F F
T' ! } hd I
0 05 1.0 0 055 1.0
(00) X; 00y X3

10+ Sw 10) 10+ Sw (10)
-2.0 20T

S S

Fig. 7. Projections of trajectory of optimisation process for
other correct value of ¥ = (0.1,—0.02,—0.5,—0.2,0.6)
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The total time of optimization is equal 3.345 msec.
This solution represents other local minimum of the
functional (2).

It is important to note that the strategy found from the
conditions of the maximum principle and corresponding to
the control vector with two parts (10) and (00) and
switching between them on a 73rd step of integration has
not been predicted in previous research. In the previous
research [23] it was supposed that the optimum strategy
must be constructed on the basis of the combination of
MTSO and TSO. This assumption is not always carried out
as shown in the present analysis.

Let's consider use of the maximum principle for the
problem of optimisation of an active circuit: the one-
cascade transistor amplifier presented in Fig. 8.

Fig. 8. One-cascade transistor amplifier

The sources of voltage of E, E; are defined. The model
of the transistor, which is the known model of Ebers-Moll
on a direct current used in the SPICE system, is chosen
[24]. The purpose of optimisation of this circuit is to
determine the right choice of admittances Y,,Y,,Y; to

provide the necessary values of the voltage on emitter Vgg
and collector Vcg transitions of the transistor. If the
current values for the voltage on transitions of the
transistor are Veg and Vg, then a natural formula for the
cost function of the optimisation process in this case is as
follows:

C(X) = (VEB —Vego )2 + (VCB —Veso )2 '

Minimisations of the cost function or to be exact a
reduction here to zero allows for solving a problem of
optimisation of a circuit. In the traditional approach to
design, three conductivities Yy,,Y,, Yy, are defined as

independent variables (K=3) and three nodal voltages
V,,V, .V, are determined as dependent (M=3). We will

define six component of a vector of X as follows:

2 2 2 _
X; =Y, X3 = Yo, X3 =Y3, X, =V,
X5 :VZ, X6 :V3.



Cost function can be defined as:

C(X) = (Xs —X, _VEBO )2 + (Xe =X _VCBO)2 :

The mathematical model of a circuit is defined by the
system of three equations of Kirchhoff:

gl(x)E lg _(Eo _X4)X12 =0
gz(X)E e _X22X3 =0

05(X)=1c —(E,— % ) =0,

where currents of base /g, emitter /i and a collector /- are
defined in the model of Ebers-Moll.

The structural basis of optimisation strategies includes
eight strategies. Results of optimisation of the presented
circuit for all strategies of structural basis and a gradient
method are presented in Table 2. The optimisation
procedure is defined by formulas (4)—(7).

Table 2

Data of all strategies of structural basis for one-cascade
transistor amplifier

N |Control |Iterations [Total CPU

vector [number |time (sec)
1] (000) 6363 2,81
2| (001 36556 12,63
3] (010) 4425 1,54
4] (011) 37074 12,25
5|/ (100) 9092 3,08
6] (101 9750 3,19
71 (110) 5382 1,76
8l 111)] 14199 1,81

The fastest strategy (010) has processor time of 1.54
sec. Time gain is 1.8 times as compared with TSO.

Applying the methodology of the maximum principle
based on formulas (8)—(16), it is possible to analyse the
behaviour of function of Hamilton for all strategies of
structural basis. The vectors of X and W consist of six
component in this case. The behaviour of function of
Hamilton on an interval from 0 to 12 msec, for eight
different values of the control vector, initial point X’
( X, =0.0816, X,, =1.2039, X5, =0.7071, X,, = -2, Xg,

=-1, X4, =-10) and the correct initial value of an auxiliary

vector ¥ = (¥, =(03-185-035-1903225) ) is
presented in Fig. 9.

Value of W, has been obtained by the additional

optimising procedure. Hamiltonian H;y for strategy (111)
has the greatest value from all eight strategies of the
structural basis on the initial part of optimisation process
from 0 to a point of S, corresponding to the 36th step of
integration of the system (4).
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1000

500+

Fig. 9. Time dependency of functions H o), H(oo1): H(o10),
Ho11), Heoo) Heoyy, Haaoy, Hagy for correct value of
parameter ¥, =(0.3,-1.85,-0.35,-1.9,0.32,2.5)

In this point, the Hamiltonian corresponding to TSO is
equal to Hqiqy and then becomes greater. It means that
since a point of S,,, the optimum strategy is TSO. The point
of switching of S,, appears automatically in the algorithm,
and the behaviour of the function of Hamilton for all
strategies of structural basis corresponds to Fig. 10.

H ¥V, =03
Huay Wy =—1.85
1000 1 ¥y, =—0.35
V,=-19
Y,,=0.32
—_—== VYV =25
500 L. K
Heroo, H
(100) 4 (110) H(ooo)
0 f — f
2.5 50V 75 100 T
msec

Fig. 10. Time dependency of functions Hgqg), Hoo1), H(o10):
Ho11), Heoo) Heoy, H(u_o), Hq1y) for correct value of
parameter W, and switch between H 13y and Hygog

The Hog function remains maximum until step 41,
and then the Hiqy function becomes maximum again and
remains so until the end of the optimisation process. The
time for optimisation is equal to 7.28 msec. The time gain
of obtained optimum strategy in comparison with strategy
(010) of Table 2 is equal to 211 times and 386 times in
comparison with TSO.

The solution obtained above is not unique. It has turned
out that by choosing other initial approximations for search
of the correct initial value of an auxiliary vector W it is
possible to find other solutions also as in the previous
example.



Summarising the obtained results, it is possible to state
two important facts. First, the theoretical result is obtained
— theoretical justification is given for the earlier opened
effect of acceleration of the process on optimisation of
circuit in the conditions of a new methodology of design.
This justification is based on the maximum principle.

Secondly, the analysis of the optimisation process of
the presented circuits showed that application of the
maximum principle really allows for the finding of the
optimum structure of the control vector U(t) by means of
an iterative procedure. Thus, considerable reduction of
CPU time in comparison with traditional approach is
observed when using the maximum principle. This result
was obtained for the case of N-dimensional space of
parameters.

IV. CONCLUSIONS

Analysis of the application of maximum principle to a
problem of circuit optimisation proves that the formerly
studied effect of acceleration on the process of
optimisation appears owing to this principle. This means
that the maximum principle of Pontryagin provides a
theoretical justification for the acceleration effect that
appears when we use the generalized formulation of
process of circuit optimisation. It is confirmed that the
maximum principle allows for finding one or several local
minima of the functional that is defined as the processor
time. Aside from that, the use of the maximum principle
provides the chance to significantly reduce the time to
circuit optimisation.

The analysis of optimisation process of the presented
circuit showed that application of the maximum principle
really allows finding the optimum structure of the control
vector by means of iterative procedure. A new theoretical
result is obtained. The possibility of applying this approach
to optimizing large and complex circuits is the subject of
further research.

REFERENCES
[1]
[2]
(3]

Bunch J.R., Rose D.J. (Eds.). Sparse Matrix Computations.
N.Y.: Academic Press, 1976.

Osterby O., Zlatev Z. Direct Methods for Sparse Matrices.
N.Y.: Springer-Verlag, 1983.

Wu F.F. Solution of large-scale networks by tearing // IEEE
Transactions on Circuits and Systems. 1976. V. 23. P. 706—
713.

Sangiovanni-Vincentelli A., Chen L.K., Chua L.O. An
efficient heuristic cluster algorithm for tearing large-scale
networks // IEEE Transactions on Circuits and Systems.
1977. V. 24. P. 709-717.

Rabat N., Ruehli A. E., Mahoney, G.W., Coleman, J.J. A
survey of macromodeling // Proceedings of IEEE
international symposium on circuits and systems. 1985. P.
139-143.

Tadeusiewicz M., Kuczynski, A. (2013). A very fast
method for the dc analysis of diode-transistor circuits //
Circuits Systems and Signal Processing. 2013. V. 32. Ne 3,
P. 433-451.

[4]

(5]

[6]

116

[7] Brayton R.K., Hachtel G.D., Sangiovanni-Vincentelli A.L.

A survey of optimization techniques for integrated-circuit

design // Proceedings of IEEE. 1981. V. 69. Ne 10. P. 1334-

1362.

Ruehli A.E. (Ed.). Circuit Analysis, Simulation and Design.

V. 3. Amsterdam: Elsevier Science Publishers, 1987.

Stehr G., Pronath M., Schenkel F., Graeb H., Antreich K.

Initial sizing of analog integrated circuits by centering

within topology-given implicit specifications // Proceedings

of the IEEE/ACM international conference on computer-

aided design. 2003. P. 241-246.

[10] Hershenson M., Boyd S., Lee T. Optimal design of a CMOS
op-amp via geometric programming // IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems. 2001. V. 20. Ne 1. P. 1-21.

[11] Kashirskiy 1.S., Trokhimenko Y.K. General optimization
for electronic circuits. Kiev: Tekhnika, 1979.

[12] Rizzoli V., Costanzo A., Cecchetti C. (1990, May 8-10).
Numerical optimization of broadband nonlinear microwave
circuits // Proceedings of IEEE MTT-S international
symposium. 1990. V. 1. P. 335-338.

[13] Ochotta E.S., Rutenbar R.A., Carley L.R. (1996). Synthesis
of high-performance analog circuits in ASTRX/OBLX //
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. 1996. V. 15. P. 273-294.

[14] Zemliak A. Analog System Design Problem Formulation by
Optimum Control Theory // IEICE Transactions on
Fundamentals of Electronics Communications and
Computer Sciences. 2001. V. E84-A. P. 2029-2041.

[15] Zemliak A.M. Comparative Analysis of the Lyapunov
Function for Different Design Strategies of Analogue
Circuits Design. // Radioelectronics and Communications
Systems. 2008. V. 51. Ne 5. P. 233-238.

[16] Zemliak A., Markina T. Behavior of Lyapunov’s function
for different strategies of circuit optimization //
International Journal of Electronics. 2015. V. 102. P. 619-
634.

[17] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V.,
Mishchenko E.F. The Mathematical Theory of Optimal
Processes. N. Y.: Interscience Publishers, Inc., 1962.

[18] Neustadt L.W. Synthesis of time-optimal control systems. J.
Math. Analysis and Applications. 1960. V. 1. Ne 2. P. 484-
492.

[19] Rosen J.B. Iterative Solution of Nonlinear Optimal Control
Problems // Journal of SIAM, Control Series A. 1966. P.
223-244.

[20] Fedorenko R.P. Priblizhennoe reshenie zadach optimalnogo
upravleniya (Approximate Solution of Optimal Control
Problems). Moscow: Nauka, 1978.

[21] Bourdin L., Trélat E. Pontryagin maximum principle for
finite dimensional nonlinear optimal control problems on
time scales // SIAM Journal on Control and Optimization.
2013.V.51. Ne 5. P. 3781-3813.

[22] Zemliak A. Maximum principle for problem of circuit
optimization // Electronics Letters. 2016. V. 52. Ne 9. P,
695-697.

[23] Zemliak A.M. (2002). Acceleration Effect of System
Design Process // IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences.
2002. V. E85-A, Ne7. P. 1751-1759.

[24] Massobrio  G., Antognetti P. Semiconductor
Modeling with SPICE. N.Y.: McGraw-Hill, 1993.

(8]
[°]

Device
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ABToHOMHBIH yHUBepcuTteT I1y>0:1a, Mekcuka, [1ys6na

HannonanbHbIN TEXHUYECKU YHUBEPCUTET Y KpauHbl, YKpanHa, Kues azemliak@mail.ru

Annomayua — Ilponecc oNTHMH3ALHMHM AHAJIOIOBOIl CXeMbI
MAaTeMaTH4YeCKH 3aJaH KaK yHOpapjsieMas JUHAMUYeCKasi
cucremMa. B 3Tom ciayuyae 3ajayy MHUHMMH3AIUUM BpeMeHHU
NPOEKTHPOBAHUSA MOKHO c(opMyIHMpOBaTh Kak 3agavy
MHHHMM3aLUH BpeMeHH nepexoHoro npouecca
AMHAMHYecKoii cucTembl. CnenualbHbli ynpapiasilomuii
BEKTOpP, M3MEHSIIOLIUii CTPYKTYpPy OCHOBHBIX YPaBHEHHI,
CIY’KMT HHCTPYMEHTOM ISl TOHMCKAa JYYIIHMX CTpaTermui
ontumu3anuu. IIpm  3ToM  mnpuHHUD — MaKcHMyMa
IlonTpsiruna sABAsieTcs TeOPeTHYECKHMM MOAXOAOM LI
HAXOK/ACHUSl ONTHMAJIBHOI CTPYKTYpbl YHPaBJSIOLIETO
BeKTOpa. Peann3anusi npuMHIMNA MAKCHMYMa OCHOBAaHAa Ha
aHa/IM3e TMOBeJeHHs TIaMHJIbLTOHHAHA JUISl Pa3JHYHBIX
crpareruii ontumm3auuu. IlokaszaHo, 4YTO MCHOJABL3Ys
NPHHIUI MAaKCHMMYMa, BO3MOKHO IOJIYYHTh pellleHHe B
(dopme n0KkaILHBIX MUHUMYMOB. OTHOCHTE/JIbHOE YCKOpeHUe
npouecca ONTHMM3AUMM LenH s Jydlleid CcTpaTeru,
HalilecHHOII HAa OCHOBe NPHUHLMIA MAKCHMYMa, COCTABJSICT
aBa TPM TOPSiAKAa BeJIHYUHBI 10 CPABHEHHIO C
TPaJMIHOHHBIM noaxoaoM. IloryyeH HOBBIN TeopeTHYeCKHUIA
pe3yjbTaT. IlppMeHeHHe JAHHOTO MOAX0AAa K ONTUMH3ALNH

0ONbIIMX W  CHO0KHBIX CXeM SIBJSieTCS  MpeIMeToM
NaJbHEHIIUX Hcc/IeI0BAHMIA.
Knrwuesvie cnosa — ontumusauus uemnei, ynpasJsemasi

JAMHAMHYECKAsl CHCTeMa, CTPaTeruu ONTUMM3AIHH, IPHHIUI
makcumyma I[lonTpsiruna.
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