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Abstract — The process of analogue circuit optimisation is 

mathematically defined as a controllable dynamic system. In 

this context the minimisation of the processor time of 

designing can be formulated as a problem of time 

minimisation for transitional process of dynamic system. A 

special control vector that changes the internal structure of 

the main equations of optimisation procedure serves as a 

principal tool for searching the best strategies of the 

optimisation process. The creation of the best strategy of the 

optimisation having the minimum processor time leads to 

search of the structure of control vector providing the 

minimum of a special functional that can be defined as CPU 

time. In this case a well-known maximum principle of 

Pontryagin is the best theoretical approach for finding of the 

optimum structure of control vector. Practical approach for 

realization of the maximum principle is based on the analysis 

of behavior of a Hamiltonian for various strategies of 

optimisation. The possibility of applying the maximum 

principle to the problem of optimisation of electronic circuits 

is analyzed in detail. It is shown that in spite of the fact that 

the problem of optimisation is formulated as a nonlinear 

task, and the maximum principle in this case isn't a sufficient 

condition for obtaining a minimum of the functional, it is 

possible to obtain the decision in the form of local minima. 

The relative acceleration of the CPU time for the best 

strategy found by means of maximum principle compared 

with the traditional approach is equal two to three orders of 

magnitude. A new theoretical result is obtained.  

Keywords — circuit optimisation, controllable dynamic 

system, optimisation strategies, maximum principle of 

Pontryagin. 

I.  INTRODUCTION 

To improve the overall quality of electronic circuit 
designs, it is very important to reduce their design time. 
Many works devoted to this problem focus on how to 
reduce the number of operations when solving two main 
problems: circuit analysis and numerical optimisation. By 
solving these problems successfully, one can reduce the 
total time required for analog circuit optimisation and this 
fact serves as a basis for improving design quality. 

The methods used to analyse complex systems are 
being improved continuously. Some well-known ideas 
related to the use of a method of sparse matrixes [1], [2] 
and decomposition methods [3]-[5] are used for the 
reduction of time for the analysis of circuits. Some 
alternative methods such as homotopy methods [6] were 
successfully applied to circuit analysis. 

Practical methods of optimisation were developed for 
circuit designing, timing, and area optimisation [7], [8]. 
However, classical deterministic optimisation algorithms 
may have a number of drawbacks: they may require that a 
good initial point be selected in the parameter space, they 
may reach an unsatisfactory local minimum, and they 
require that the cost function be continuous and 
differentiable. To overcome these issues, special methods 
were applied to determine the initial point of the process by 
centering [9] or applying geometric programming methods 
[10]. 

A more general formulation of the circuit optimisation 
problem was developed on a heuristic level some decades 
ago [11]. This approach ignored Kirchhoff’s laws for all or 
part of a circuit during the optimisation process. The 
practical aspects of this idea were developed for the 
optimisation of microwave circuits [12] and for the 
synthesis of high-performance analog circuits [13] in an 
extreme case where all the equations of the circuit were not 
solved during the optimisation process.  

In work [14] the problem of circuit optimisation is 
formulated in terms of the theory of optimal control. Thus, 
the process of circuit optimisation was generalized and 
defined as the dynamic controllable system. In this case, 
the basic element is the control vector that changes the 
structure of the equations of the system of optimisation 
process. Thus, there is a set of strategies of optimisation 
that have different number of operations and different 
computing times. The introduction and analysis of the 
function of Lyapunov of the optimisation process [15], 
[16] allows comparison of various strategies of 
optimisation and choosing the best of them having 
minimum processor time. At the same time, the problem of 
searching for the optimal strategy and the corresponding 
optimal trajectory can be solved most appropriately within 
the maximum principle of Pontryagin [17]. 

The main complexity of application of the maximum 
principle consists of the search of initial values for 
auxiliary variables at the solution of the conjugate system 
of equations. Application of the maximum principle in case 
of linear dynamic systems is based on the creation of an 
iterative process [18], [19]. 

In case of nonlinear systems, the convergence of this 
process is not guaranteed. However, application of the 
additional approximating procedures [20], [21] allows 
constructing sequence of the solutions converging to a 
limit under certain conditions.  
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The first step in the problem of possibility of 
application of maximum principle for circuit optimisation 
was presented in [22]. In the present work, the solution of 
the problem is presented for N-dimensional case.  

II. THEORETICAL BASIS 

The following question is interesting, whether it is 
possible to extend the obtained analytical result to the 
numerical solution of the optimisation problem for 
nonlinear circuit of any dimension. Let's consider the 
problem of optimisation of a nonlinear circuit with two 
nodes shown in Fig. 1. 

 

Fig. 1. Nonlinear two-node voltage divider 

The given circuit is a nonlinear divider of voltage. 
There are three independent parameters  (K=3)  and   two   
dependent ones (M=2). The nonlinear element has the 

following dependency:  22101 VVayyn  . We 

define the voltage V0 as 1, and the variables x1, x2, x3, x4, 

and x5 as: ,1

2

1 yx  ,2

2

2 yx  ,3

2

3 yx   14 Vx  , and 

25 Vx  . The vector of the phase variables of the circuit 

is 
5RX  . In this case the nonlinear element is defined 

by the following expression:  25401 xxayyn  .  

 Let's determine cost function of process of 
optimization by the formula: 

   
   25 wxC X ,     (1) 

where w – the required value of output voltage. Following 
theoretical bases that were developed in [14], we formulate 
the problem for circuit optimisation as a task of search of 
the optimisation strategy with minimum possible CPU 
time. For this purpose, we define the functional, which is 
subject to minimisation, by the following expression: 

     
T

dtfJ
0

0 X ,         (2) 

where  X0f  is the function that is conditionally 

determining the density of number of arithmetic operations 
in a unit of time t. In that case, the integral (2) defines total 
number of operations necessary for circuit optimisation 
and is proportional to the total CPU time. 

The structure of function  X0f  cannot be defined. 

However, we can compute CPU time using the  
capabilities of the compiler. We will further identify the 

integral (2) with CPU time, and therefore, the problem of 
minimisation of CPU time corresponds to a problem of 
minimisation of the integral (2). 

The model of a circuit is defined by the following 
system: 

        01 2

2454

2

540

2

141  xxxxxxayxxg X

         (3) 

      02

3554

2

5402  xxxxxxayg X  

 The system of equations of the optimisation procedure 
can be presented in the following form: 

     

 UX,i
i f

dt

dx
 ,   i=1, 2,…,N                  (4) 

where 

         

   UXUX ,, F
x

f
i

i



 , i=1, 2, K 

         (5) 

      iKi
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x

uf 



  1,, UXUX , i=K+1,…, N 

where  UX,F  is the generalized cost function of the 

optimisation process defined by expression: 

  

     XXUX 



M

j

jj guCF
1

2, ,    (6) 

i  for i=K+1,…,N is the additional parameter defining an 

increment of the value of the dependent variables in the 
course of optimization and computed by the formula: 

          

  s

i

s

ii x 11
X


 ,     (7) 

and  Xi  is the implicit function defining the component 

number i of a vector X at the solution of system (3),   is 

a step of integration and s is the step number of the 
procedure of the integration of system (4). 

Let's obtain the main expressions corresponding to the 
maximum principle. The conjugate system of the equations 

for the additional variables 
i  has a form: 
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The Hamiltonian is determined by the following 
formula: 

   
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where the first and second sums are defined by the 

following expressions: 
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As a result the Hamiltonian can be expressed as follows: 

 

  
  210,, hhhhH c UΨX

  
(11) 

 
where hc  is the part of a Hamiltonian that does not depend 
on the control vector, 
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Other components of Hamiltonian depend on the control 
vector U: 
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Let's designate the sum of these three components as 

 UΨX ,,vh  (hv=h0+h1+h2). Formulas (1)-(15) define the 

process of system optimisation and the process of 
computing a Hamiltonian in case of K independent 
variables and M dependent variables (N=K+M). In the case 
of the circuit presented in Fig. 1, formulas are used for K=3 
and M=2. In this case the control vector of U contains two 
components (u1, u2). The supremum of the function 

 UΨX ,,vh  in the parameter U will be designated Hmax: 

       
   UΨXΨX

U

,,sup,max v
u

hH



  

(16) 

For the circuit in Fig. 1 this function is defined by the 
following expression: 
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The structure of the control vector providing this 
maximum in each point of optimisation process represents 
the result of the use of the maximum principle. 

III. NUMERICAL RESULTS 

The analysis of the process of optimisation for a circuit 
with two nodes allows for the finding of the optimum 
structure of the control vector. The possibility of applying 
the maximum principle of Pontryagin to the problem of 
optimisation of electronic circuits is analysed. It is shown 
that in spite of the fact that the problem of optimisation is 
formulated as a nonlinear task, and the maximum principle 
in this case isn't a sufficient condition for obtaining a 
maximum of the functional, it is possible to obtain the 
decision in the form of local minima. Local minima of the 
functional, which is defined as the processor time 
necessary for the procedure of optimisation, provide a 
rather low value of the functional. The relative acceleration 
of the CPU time for the best strategy found by means of 
maximum principle compared with the traditional 
approach is equal two to three orders of magnitude. 

The behaviour of Hamiltonian for four possible options 
of the control vector U: (00), (01), (10), and (11) with the 

correct initial value of an auxiliary vector Ψ ,                     

(  5.2,32.0,9.1,35.0,85.1,3.00 сΨ ) is presented in Fig. 2.  

 

Fig. 2. Time dependency of functions H(00), H(01), H(10), H(11) 
for correct value of parameter 

с0Ψ  

 

The value of 
с0Ψ  has been obtained by the additional 

optimising procedure on the basis of a gradient method for 

the following initial point in process of designing X
0
:         

( 10x =1.0,
20x =1.0, 30x =1.0, 40x = -1.5, 50x = -1.6). 

Four possible combinations of the components of the 
control vector U define four various dependencies for 

Hamiltonian:
 
 )11()10()01()00( ,,, HHHH . The 

Hamiltonian corresponding to the control vector (11) has 
the greatest value of all possible. Therefore, the optimum 
trajectory corresponds to this vector and defines the first 
part of a trajectory in the space of parameters. Some two-
dimensional projections of a trajectory of optimisation 
process in the space of variables X are presented in Fig. 3.  
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Fig. 3. Projections of trajectory of optimisation process with 
initial point X0: )6.1,5.1,1,1,1( 5040302010  xxxxx

 

 

A part of the trajectory from point S to point Sw 
corresponds to the control vector U=(11). Then, at a time 
point of 5.753 msec, which corresponds to 121 steps of 
integration of the system (4), the Hamiltonian 
corresponding to the strategy with the control vector (00) 
becomes the greatest of all, and at this moment the vector 
(00) becomes the optimum control vector. The trajectory, 
including the jump and the current point of the 
optimisation process, instantly moves to the final point of 

the solution of a problem of F.  

The data of optimisation process for the presented 
circuit for four strategies of structural basis and the same 
initial point X

0
 are provided in Table 1 for comparison.  

 

Table 1 

Data of all strategies of structural basis 

 
 

The most rapid strategy is MTSO, which corresponds 
to the control vector (11), has processor time of 7.934 sec. 
The optimum strategy considered above and found by the 
maximum principle has a gain in time of 1379 times that of 
strategy (11) and 2795 times that of the TSO with U= (00). 

The behaviour of the Hamiltonian that corresponds to 
another choice for the initial point of optimisation process 

of circuit X
0
: ( 10x =1.0, 20x = 1.0, 30x =1.0, 40x = -2.5,

50x = -2.5) for four possible values of the control vector 

U: (00), (01), (10), and (11) is shown in Fig. 4. 

 
 

Fig. 4. Time dependency of functions H(00), H(01), H(10), H(11) 
for other correct value of parameter 

 25.0,99.1,625.0,8.0,42.00 cΨ
 

 

In this case the following correct value of an auxiliary 

vector   25.0,99.1,625.0,8.0,42.00 cΨ  providing 

the minimum value of processor time has been obtained. In 
this example, the optimisation procedure is defined by the 
control vector (11) from T=0 to T=1.761msec because the 
Hamiltonian of H(11) has the maximum value for this 
control vector of the four possible. Then, at a time of 
T=1.761 msec, which corresponds to the 35th step of 
process of integration of system (4) the Hamiltonian 
corresponding to the control vector (00) has the maximum 
value (H(00)>=H(11)) and the switching to the TSO is 
observed. The movement corresponding to the strategy 
(00) is carried out on one step of integration and the 
current point of the optimisation process moves to the final 
point of F with the given accuracy. It is clear from the 
behaviour of the projections of the optimisation trajectory 
shown in Fig. 5. 

 

Fig. 5. Projections of trajectory of optimisation process with 
initial point X0: )5.2,5.2,1,1,1( 5040302010  xxxxx

 

It is important to emphasize that the numerical 
algorithm automatically switches from one strategy to 
another on the basis of ratio (16), corresponding to the 
maximum principle. It would be desirable to note that the 
obtained decision is not the unique local minimum of the 
target function of T. Other local minimum has been 

reached with the other vector Ψ . 

N Control Iterations Total CPU

vector number time (sec)

1      (0 0) 116973 16.081

2      (0 1) 139143 8.897

3      (1 0) 133154 11.241

4      (1 1) 170953 7.934
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The behaviour of the function of Hamilton for the same 
initial point of the optimisation process of the circuit X0: 

)5.2,5.2,1,1,1( 5040302010  xxxxx
 but containing 

other initial value for auxiliary vector Ψ is presented in 

Fig. 6. The correct value of 
с0Ψ  obtained by the additional 

optimising procedure is next 

 6.0,2.0,5.0,02.0,1.00 cΨ . In this case the 

other strategy is optimal one. 

 

 

Fig. 6. Time dependency of functions H(00), H(01), H(10), H(11) 
for other correct value of parameter 

 6.0,2.0,5.0,02.0,1.00 cΨ
 

 

An additional optimisation by means of parameter 0Ψ  

leads to other local minimum that is visible from the 
obtained dependencies. The Hamiltonian corresponding to 
the strategy with control vector (10) accepts the maximum 
value and this strategy is the first part of the optimum 
strategy.  

The Hamiltonian corresponding to TSO with the 
control vector (00) is greater than for all other strategies 
from the point corresponding to the 38th step of 
integration, and a switching to TSO takes place. That is 
also clear from the behaviour of projections of the 
optimisation trajectory in Fig. 7. 

 

 

Fig. 7. Projections of trajectory of optimisation process for 

other correct value of  6.0,2.0,5.0,02.0,1.00 cΨ
 

The total time of optimization is equal 3.345 msec. 
This solution represents other local minimum of the 
functional (2). 

It is important to note that the strategy found from the 
conditions of the maximum principle and corresponding to 
the control vector with two parts (10) and (00) and 
switching between them on a 73rd step of integration has 
not been predicted in previous research. In the previous 
research [23] it was supposed that the optimum strategy 
must be constructed on the basis of the combination of 
MTSO and TSO. This assumption is not always carried out 
as shown in the present analysis.  

Let's consider use of the maximum principle for the 
problem of optimisation of an active circuit: the one-
cascade transistor amplifier presented in Fig. 8. 

 

Fig. 8. One-cascade transistor amplifier 

 
The sources of voltage of E0, E1 are defined. The model 

of the transistor, which is the known model of Ebers-Moll 
on a direct current used in the SPICE system, is chosen 
[24]. The purpose of optimisation of this circuit is to 

determine the right choice of admittances 321 ,, yyy  to 

provide the necessary values of the voltage on emitter VEB0 
and collector VCB0 transitions of the transistor. If the 
current values for the voltage on transitions of the 
transistor are VEB and VCB, then a natural formula for the 
cost function of the optimisation process in this case is as 
follows: 

  

      20

2

0 CBCBEBEB VVVVC X .  

 
Minimisations of the cost function or to be exact a 

reduction here to zero allows for solving a problem of 
optimisation of a circuit. In the traditional approach to 

design, three conductivities 
321 ,, yyy  are defined as 

independent variables (K=3) and three nodal voltages 

321 ,, VVV  are determined as dependent (M=3). We will 

define six component of a vector of X as follows: 

 

1

2

1 yx  , 
2

2

2 yx  , 
3

2

3 yx  , 
14 Vx  ,  

25 Vx  , 
36 Vx  .   
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Cost function can be defined as: 

     
     2046

2

045 CBEB VxxVxxC X .    

 

The mathematical model of a circuit is defined by the 
system of three equations of Kirchhoff: 

 

        
    02

1401  xxEIg BX  

         
  03

2

22  xxIg EX   

         
    02

3613  xxEIg CX , 

 

where currents of base IB, emitter IE and a collector IC are 
defined in the model of Ebers-Moll.  

The structural basis of optimisation strategies includes 
eight strategies. Results of optimisation of the presented 
circuit for all strategies of structural basis and a gradient 
method are presented in Table 2. The optimisation 
procedure is defined by formulas (4)–(7). 

 

Table 2 

Data of all strategies of structural basis for one-cascade 

transistor amplifier 

N Control Iterations Total CPU

vector number time (sec)

1   (0 0 0) 6363 2,81

2   (0 0 1) 36556 12,63

3   (0 1 0) 4425 1,54

4   (0 1 1) 37074 12,25

5   (1 0 0) 9092 3,08

6   (1 0 1) 9750 3,19

7   (1 1 0) 5382 1,76

8   (1 1 1) 14199 1,81  
 

The fastest strategy (010) has processor time of 1.54 
sec. Time gain is 1.8 times as compared with TSO.  

Applying the methodology of the maximum principle 
based on formulas (8)–(16), it is possible to analyse the 
behaviour of function of Hamilton for all strategies of 

structural basis. The vectors of X and Ψ  consist of six 
component in this case. The behaviour of function of 
Hamilton on an interval from 0 to 12 msec, for eight 
different  values  of  the control  vector,  initial  point     X

0
: 

(
10x =0.0816,

20x =1.2039, 
30x =0.7071, 

40x = -2, 
50x

=-1,
60x =-10) and the correct initial value of an auxiliary 

vector Ψ , (  5.2,32.0,9.1,35.0,85.1,3.00 сΨ ) is 

presented in Fig. 9. 

Value of 
с0Ψ  has been obtained by the additional 

optimising procedure. Hamiltonian H(111) for strategy (111) 
has the greatest value from all eight strategies of the 
structural basis on the initial part of optimisation process 
from 0 to a point of Sw corresponding to the 36th step of 
integration of the system (4). 

 

Fig. 9. Time dependency of functions H(000), H(001), H(010), 
H(011), H(100), H(101), H(110), H(111) for correct value of 
parameter  5.2,32.0,9.1,35.0,85.1,3.00 сΨ  

 

In this point, the Hamiltonian corresponding to TSO is 
equal to H(111) and then becomes greater. It means that 
since a point of Sw, the optimum strategy is TSO. The point 
of switching of Sw appears automatically in the algorithm, 
and the behaviour of the function of Hamilton for all 
strategies of structural basis corresponds to Fig. 10. 

 

 

Fig. 10. Time dependency of functions H(000), H(001), H(010), 
H(011), H(100), H(101), H(110), H(111) for correct value of 

parameter 
с0Ψ and switch between H(111) and H(000) 

 

The H(000) function remains maximum until step 41, 
and then the H(111) function becomes maximum again and 
remains so until the end of the optimisation process. The 
time for optimisation is equal to 7.28 msec. The time gain 
of obtained optimum strategy in comparison with strategy 
(010) of Table 2 is equal to 211 times and 386 times in 
comparison with TSO. 

The solution obtained above is not unique. It has turned 
out that by choosing other initial approximations for search 

of the correct initial value of an auxiliary vector Ψ ,  it is 

possible to find other solutions also as in the previous 
example.        
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Summarising the obtained results, it is possible to state 
two important facts. First, the theoretical result is obtained 
– theoretical justification is given for the earlier opened 
effect of acceleration of the process on optimisation of 
circuit in the conditions of a new methodology of design. 
This justification is based on the maximum principle.    

Secondly, the analysis of the optimisation process of 
the presented circuits showed that application of the 
maximum principle really allows for the finding of the 
optimum structure of the control vector U(t) by means of 
an iterative procedure. Thus, considerable reduction of 
CPU time in comparison with traditional approach is 
observed when using the maximum principle. This result 
was obtained for the case of N-dimensional space of 
parameters. 

IV. CONCLUSIONS 

Analysis of the application of maximum principle to a 
problem of circuit optimisation proves that the formerly 
studied effect of acceleration on the process of 
optimisation appears owing to this principle. This means 
that the maximum principle of Pontryagin provides a 
theoretical justification for the acceleration effect that 
appears when we use the generalized formulation of 
process of circuit optimisation. It is confirmed that the 
maximum principle allows for finding one or several local 
minima of the functional that is defined as the processor 
time. Aside from that, the use of the maximum principle 
provides the chance to significantly reduce the time to 
circuit optimisation.  

The analysis of optimisation process of the presented 
circuit showed that application of the maximum principle 
really allows finding the optimum structure of the control 
vector by means of iterative procedure. A new theoretical 
result is obtained. The possibility of applying this approach 
to optimizing large and complex circuits is the subject of 
further research. 
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Аннотация — Процесс оптимизации аналоговой схемы 

математически задан как управляемая динамическая 

система. В этом случае задачу минимизации времени 

проектирования можно сформулировать как задачу 

минимизации времени переходного процесса 

динамической системы. Специальный управляющий 

вектор, изменяющий структуру основных уравнений, 

служит инструментом для поиска лучших стратегий 

оптимизации. При этом принцип максимума 

Понтрягина является теоретическим подходом для 

нахождения оптимальной структуры управляющего 

вектора. Реализация принципа максимума основана на 

анализе поведения гамильтониана для различных 

стратегий оптимизации. Показано, что используя 

принцип максимума, возможно получить решение в 

форме локальных минимумов. Относительное ускорение  

процесса оптимизации цепи для лучшей стратегии, 

найденной на основе принципа максимума, составляет 

два – три порядка величины по сравнению с 

традиционным подходом. Получен новый теоретический 

результат. Применение данного подхода к оптимизации 

больших и сложных схем является предметом 

дальнейших исследований.  

Ключевые слова — оптимизация цепей, управляемая 

динамическая система, стратегии оптимизации, принцип 

максимума Понтрягина. 
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