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Abstract — Formal Verification (FV) is becoming now 
important part of Design Verification (DV) especially for 
areas which has higher requirements for quality of chips such 
as networking chips which should work 24x7 without failures 
while re-spin cost for huge chips is high.  It is difficult to cover 
all possible scenarios by simulation having a lot of corner 
cases for packet alignments, sizes, combinations of values of 
configuration ports and registers. Formal Verification should 
be able to help to improve quality and reduce Time to Market 
but it requires: 

- Selection of right scope, candidate and method for 
Formal Verification; 

- Addressing Formal challenges, main of such is fighting 
with complexity and exponential grow of proof time with 
each proof cycle; 

- Consistent Methodology to ensure verification coverage 
and to reduce effort. 

The paper goes through those aspects basing on experience at 
Cisco Systems Inc. with help from OSKI Technology [1], 
Formal Verification service provider and Formal sign-off 
company[2]. The paper covers: 

1) Brief review of Formal Applications while concentrating 
on End-to-End Formal sign-off for Design Modules along 
with criteria for selection of good candidates for Formal; 

2) Structure of simple Formal Environment; 

3) Methods helping to fight with complexity which author 
found especially useful for data transport modules of 
networking chips, such as floating pulse method, Wolper 
method, use of abstraction models; 

4) Formal methodology aspects including: 

- Document and test plan flow; 

- Run Flow, Regression & Scripting; 

- Coverage Flow; 

- Reuse for Formal & Simulation. 

Keywords — Design Verification, Formal Verification,  
SystemVerilog, SVA. 

I. INTRODUCTION 
This paper is primarily based on the experience in 

Design Verification of networking chips at Cisco Systems 

Inc. There is good history of using Formal Verification at 
Cisco. However in our department we found that we need 
more consistent shared flow and infrastructure support. We 
started from training from OSKI Technology, recognized 
experts delivered Formal Verification services, and then 
worked on establishing Formal Methodology. 

Formal Verification now is a good complimentary to 
simulation based Design Verification [3]. It has advantages 
such as: 

- High quality: potentially exhaustive proof for 
implemented checkers for any legal input sequence and 
configuration combinations; is able to catch corner case 
bugs; 

- Typically less time to setup and verify; could be started 
by designer at early stages. 

On the other hand it has the following restrictions and 
challenges: 

- Restrictions on design complexity and input sequence 
length; 

- Might require application of special techniques to fight 
with complexity which needs expertise; 

- Time to closure is hard to predict, sometimes it’s even 
difficult to tell if design if suitable for FV. 

The key point is to select right FV application, level and 
design entity. 

II. FORMAL APPLICATIONS & DESIGN SELECTION 

A. Formal applications types  
Formal applications [4], [5] could be classified by 

objective, automation and effort from user, in particular: 

1) Automated Formal Linter which doesn’t require 
writing user code but allows to find such issues as array 
boundary violation, multiple active drivers for the signal;  
some tools consider check for dead code, etc. from the next 
section also as part of Automated Formal check; 
2) Formal Apps for particular verification aspects 
including: 
- Formal Coverage Analysis (FCA) [6]: allows to find 

dead code, unreachable FSM state, etc.; we made it as 
part of DV Flow; pretty useful for simulation coverage 
closure;  

- Connectivity Check: allows to describe in simple way 
source, destination points and conditions for 
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connectivity checks; easy to apply, could be used at 
different levels including chip level; 

- X-Propagation: allows to find RTL issues even before 
simulation started, especially critical for X-optimism 
when RTL simulation shows concrete value instead of 
‘X’; 

3) Assertion Based Design Exploration / Bug Hunting: 
assumes writing some number of checker assertions (along 
with assumptions and coverage assertions) and trying to 
prove them; it could be used from early stage of the project 
by designer to late stage by DV engineer, some applications 
are listed below: 
- Designer or DV engineer describes assertions for DUT 

interfaces; for input interfaces assertions should be 
turned later to assumptions by Formal Tool commands; 
for standard interfaces Assertion VIP could be used if 
available; Formal Tool should be able to check 
compliance with interface protocols [7]; internal 
assertions for modules could be added by designer and 
verified as well; 

- Designer could add to that coverage assertions 
exercising some simple or  corner-case scenarios and 
get waveforms without running simulation; 

- At later stage of the project along with simulation DV 
engineer could write specific assertions to hit and verify 
corner case scenarios and close coverage; advanced 
Bug Hunting techniques could use as initial state for 
Formal proof, state, where design comes after some 
simulation cycles; 

- During top-level simulation or even while exercising 
manufactured chip there could be found issues which 
require reproducing them; Formal could help here and 
also ensure that fix is complete; 

4)  Equivalence Check: assumes comparison between 
reference design / model and design to be verified; 
historically it was one of the first widely used Formal 
applications to check equivalence between RTL and 
synthesized code; now dedicated  tools are introduced which 
do comparison between two RTL designs or even with C-
model; this application requires RTL / accurate reference 
model; 
5) End-to-end sign-off check of design modules basing on 
SVA assertions which assumes exhaustive verification at 
some scope. 

While all Formal applications are pretty beneficial, the 
paper is focusing on the End-to-end sign-off Formal 
Verification which could replace simulation for certain 
design modules, release DV engineering resources and 
exhaustively check design at that level.  Formal could be 
applied at different levels including architectural. The paper 
primarily talks about Formal Verification of RTL design 
code. 

B. Design Block selection for Formal Verification 
Due to Formal Verification complexity & potential 

exponential grow of Proof time for each next clock cycle 
because of exhaustive nature of Formal proof, special care 
needs to be taken when selecting modules for Formal proof. 

The following factors need to be taken into account 
when identifying modules for formal proof: 

- Type of the design, best fit is control or data transport 
design; data transform design having multipliers, wide 
adders inside is difficult for Formal model check, for 
this type of design equivalence check might work; 

- Complexity of design: size of design should be decent, 
pipeline depth and input sequence for verification 
should not be too long; it is difficult to give certain 
numbers as it depends on functional complexity, 
symmetry of design, used Formal Tool, etc., just some 
example of design proven by FV has several thousands 
of flip-flops, several hundred inputs, summary of 
pipeline depth and input sequence to prove – around 20 
cycles; 

- How much benefits we are getting from Formal 
comparing to simulation: number of corner cases, 
configuration combinations, is it reuse block which 
should work in different modes and should be 
exhaustively verified; 

- Status and history of verification: if previous version 
was verified via simulation, how different is the new 
one; what is simulation coverage; were any bugs found 
after simulation verification done. 

After identifying candidates, evaluation and planning 
needs to be done including: 

- Measuring design complexity: number of flip-flops, 
delay; 

- Better understanding design, parameters; 

- Matching skill set of available FV resources. 

III. STRUCTURE OF SIMPLE FORMAL ENVIRONMENT 
Formal Environment for end-to-end check targeting 

sign-off typically includes: 

- Interface components implemented protocol checks; 

- End-to-end checkers. 

Structure presented in the figure below. 

 
Figure 1. Simple Formal Environment Structure 

Interface component features and applications: 

- Located in separate modules; 

- Contains SVA checker assertions, assistant code and 
coverage assertions, no assumptions; 
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- Assertion naming convention should reflect direction, 
for example source-destination: src__dst_<name>; it 
is critical  when signals of both directions are integrated 
inside the same interface; 

- Assertions changed to constraints (assumptions) from 
inside Formal environment script for input signals / 
Input Interface Components; 

- Interface components instantiated inside simulation 
environment as well as in Formal which is especially 
important for Input Interface Components to check for 
over-constraints (failure of assertion in simulation is 
sign of over-constraint); 

- Interface Components could contain intermediate 
results which could be used inside End-to-end Checkers  

End-to-end checker features: 

- Typically more complex than Interface Components 
and require special methods to fight with complexity 
and exponential time grow; the methods are described 
in the next section; 

- Could use intermediate results from Interface 
Components. 

As an example of data transport module from 
networking chip we’ll take Delimiter Removal module 
which converts one packet protocol with Start-Of-Packet 
(SOP) – End-Of-Packet (EOP) delimiters located inside data 
flow to another protocol which has those signals located in 
separate signals. Next figure illustrates the simplified 
function. In real life the protocols are more complicated: 
there are several bytes passed each cycle; packet with low 
priority could be interrupted by packet with high priority. 

 
Figure 2. Simplified function of Delimiter Removal Module 

Here Input Protocol is more complex and requires 
functions to extract SOP-EOP flags from data stream using 
assistant Verilog code. The results could be used by End-to-
end checkers. 

IV. METHODS TO REDUCE PROOF TIME 
Formal Verification exhaustively verifies design for any 

legal combination of inputs and design states. It starts from 
initial state (typically after reset) and checks behavior for 
any combination of input signals. Then goes from the set of 
reached states and checks any combinations of inputs again, 
etc. That is why each next step (clock cycle) proof could 
take same amount of time as for all previous steps together 
leading to exponential grow of proof time depending on 
proof depth (number of clock cycles). It makes sometime 

non-realistic to get full proof or reach required proof depth 
in reasonable time. There are several approaches how to 
fight with that by reducing proof complexity. Some of them 
are described below. 

A. Use of symbolic variables  
Basic idea: we are tracking and checking only one 

arbitrary instance of design or sequence item selected by 
symbolic variable. It could significantly reduce proof time. 
Note that we are not extra restricting input space but 
allowing any legal input sequences.  

 For example, if we have several input ports and several 
output ports we could track only transactions which go from 
some arbitrary selected input to some arbitrary selected 
output port. Selected variable values should be unchanged 
through the proof.  

Symbolic variables also could be used to select one 
arbitrary bit inside byte, for example: 

wire [2:0] sym_data_bit; 

sym_data_bit_stable: assert property ( 

    ##1 (sym_data_bit == $past(sym_data_bit) 

);  

B. Selection of sequence item with Floating Pulse method  
Here we are tracking and checking only one sequence 

item, it could be byte, it could be packet or another 
transaction. Floating pulse is binary signal which is 
constrained to be active during any but only one cycle. It 
selects the sequence item.  

Item which is going to be tracked is typically marked 
(colored) at the input – so we should be able to detect it at 
the output. One bit could be used for coloring data byte. That 
bit has inactive (typically 0) value for all bytes except 
colored byte when the bit has active (typically 1) value. It is 
done via constraints (SVA assumptions).  

Here is illustration of application of floating pulse 
method for Delimiter Removal Module. 

 
Figure 3. Floating Pulse method application 

Example of code for generation of floating pulse:  
wire floating_pulse; 

reg floating_pulse_reg; 

always @ (posedge clk) begin 

   if (reset) 
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       floating_pulse_reg <= 1’b0; 

   else if (floating_pulse)  

       floating_pulse_reg <= 1’b1; 

floating_pulse_model: assert property ( 

   floating_pulse_reg |-> !floating_pulse 

); 

 

Example of code for coloring bit 0 inside input byte: 
color_bit: assert property( 

   @(posedge clk) disable iff (reset) 

   data_bus[0] == floating_pulse 

); 

In the discussed Formal environment Floating Pulse 
method used in the following checkers: 

1) Check that any valid input byte after some number of 
cycles is detected at the output (Forward Progress Checker): 
additional counter is used which counts valid cycles after 
floating pulse before colored byte is detected at the output; 
counter value is compared with pipeline depth via assertion; 
2) Check that packet boundary is preserved at the output: 
at the input we arbitrary color first byte of a packet and then 
check that colored byte is still the first at the output 
Another method described below is used to check byte 
contents and bytes order. 

C. Using Wolper method to check data contents and 
order 
Wolper method colors two consecutive items at the 

input and checks that only two consecutive items are colored 
at the output. For completeness both 0 and 1 should be used 
for coloring. This method allows to prove that data contents 
and order is preserved, no drops, no injections. 

It is used in the discussed environment for that purpose. 

Complication here though for Delimiter Removal 
Module is that it should maintain order of bytes within 
certain packet priority but packets of low priority could be 
interrupted by higher priority packet. That is why two 
consecutive bytes of low priority packets could be apart. It 
requires additional proof depth and extra care. So it makes 
difficult to reach required proof in reasonable time. Case 
splitting approach described below is used to resolve it. 

D. Splitting Checkers 
Idea behind that technique is to reduce complexity – 

Cone of Influence (COI) of each checker. It could be done 
different ways: 

- By slitting property when complex expression is used 
on the right side of implication; 

- By defining separate checkers for different functional 
aspects, for example, different operations; 

- By defining separate checkers for different modes; 

- Using Assume-Guarantee approach with selecting 
internal points and defining checkers to and from 
internal points 

In the discussed Formal environment we had to fix 
values of some symbolic variables used along with Wolper 
method and run Formal proof for various values separately. 
For example position of bit inside byte was fixed to certain 
value, position of byte inside input bus was fixed. Note that 
in some cases after design analysis and discussion with 
designer, conclusion could be made that it is enough to make 
proof only for some corner case values of symbolic 
variables, for example first and last bit position. 

In the following couple of sections we are discussing 
aspects of design abstraction models restricting them to few 
typical examples.   

E. Reset Abstraction Model 
It is difficult or sometimes not possible to reach large 

proof depth in reasonable time. On the other hand we need 
to ensure that design is working properly from any state 
even if it requires long sequence to reach that state. 

 For example, design has wide counter and action 
happened when counter reaches some big value. If we start 
at reset state then big number of cycles is required to 
exercise the action.  

The idea behind Reset Abstraction is to make action 
state closer. To make it happened instead of getting initial 
value at reset we are allowing any value. So counter could 
get high value right at reset and action could be verified. 
Special care might need to be taken to sync other signals 
with arbitrary reset value. 

Here is example from the discussed Formal environment. 
Here we have packet length counter which is reset for every 
new packet and if packet count reaches certain configurable 
value, packet should be marked with error and truncated. 
Reset abstraction leaves value at reset not driven but keep 
all other functionality not touched. This is illustrated in the 
next figure. 

 
Figure 4. Example of Counter Reset Abstraction 

F. Memory & FIFO Abstraction Models 
Other typical examples of abstraction models which are 

used to reduce proof complexity are Memory & FIFO 
Abstraction models. 

Example of Memory Abstraction Model: 

- Maintains data only for one symbolic address : writes 
and reads data when actual address matches the 
symbolic one;  

DUT 
cnt 

DV 
cnt 

Next data 

Reset value 
0 

Reset signal 

Reset value 
not driven 
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- Returns random data for all other addresses. 

Examples of FIFO Abstraction Model: 

- Use symbolic “any” depth of FIFO: it will allow to 
reach full condition earlier; 

- If depth cannot be compromised and made symbolic, 
then use reset abstraction for read and write pointers 
and sync other signals with them; 

- Keep track of only one data entry selected by floating 
pulse or by colored bit inside the data 

V. FORMAL METHODOLOGY ASPECTS 

A. Documents & Test Plan Flow 
Formal Verification is less standardized than simulation. 

That is why having good set of documentation is especially 
important for knowledge transfer. 

We developed some number of documents for the 
Formal flow support including: 

- Formal Verification Process Description which 
describes phases and milestones from Formal Planning 
to Formal Complete, focus and exit criteria for each 
phase including reviews and approvals of checklists; 

- Formal Milestone Checklist for different milestones to 
ensure that nothing is missed; examples of checklist 
items: “Reviewed Required Proof Depth with 
designer”, ”All tests in Formal regression passed”; 

- Formal Environment Template, including description 
of Interface Components; End-to-end Checkers, Test 
bench Configurations, Interesting scenarios, etc. 

- Test Plan template. 

Test Plan is supported by in-house tool and shared with 
simulation. In the Test Plan some intends could be covered 
by simulation and some intends could be covered by Formal 
verification methods. Test plan metrics contain references to 
actual code: for Formal proof metrics we require reference 
not just to check assertion but also to coverage assertion. 

B. Run Flow, Regressions & Scripting 
One could use just Formal Tool to run Formal tests 

especially at initial stages with GUI. However at some point 
typically you need to run Formal tool for different 
constraints, parameters, etc. Eventually you will have 
regression list which will be run in batch mode. 

In-house script simplifies passing tests to Formal tool, 
setting signals and parameters, selecting assertions. The 
same script is used for running simulation as well. 

From our experience it is difficult to get full proof for 
end-to-end checkers but bounded proof for certain number 
of cycles could be enough. That is why it is important to 
analyze design and calculate Required Proof Depth (RPD) 
taking into account: 

- Pipeline depth / Latency of the design; 

- Results of Microarchitecture Analysis with and without 
designer; 

- Length of input sequences which require proof 
including sequences for interesting corner case 
scenarios. 

If Formal proof reaches RPD when proving checker or 
coverage property, we could consider that property is 
proven; if all properties are proven then the test passes. 
Support for defining and checking RPD is part of the flow. 

We have regression support shared with simulation 
which allows to run set of tests with various combinations 
of configuration values when needed for case splitting. 

C. Coverage Flow 
Formal covers all possible combinations of input 

stimulus and states inside Cone Of Influence (COI) of 
particular checker assertion but we need to ensure that all 
design constructs are covered, there is no over-constraints, 
there is enough checkers, so they are able to catch DUT 
bugs. 

We used the following techniques / rules to get 
confidence that DUT is formally verified: 

1) Interesting scenarios 
Coverage properties should be implemented to ensure 

that “interesting” corner case scenarios could be reached 
within RPD. It is recommended to include check for output 
results and ensure that design comes to idle state. Here is 
some example below: 

intscen_interleave_cover: cover property ( 

// input sequence     

   (Srdy && S_intf.sop && (S_intf.pri==PRI_MC))##1 

   (Srdy && S_intf.sop && (S_intf.pri==PRI_UC))##1 

    . . . 

##[1:PIPE_DELAY] 

// output results & state 

((uc_cnt==2) && (mc_cnt==2)&& D_intf.idle) 

); 

2) Coverage for each group of checkers 
Each group of checker assertions should be 

accompanied by coverage assertions to ensure hitting corner 
case scenarios 

3) Controllability Input Stimulus coverage. 
Main purpose here is to ensure that there is no over-

constraints which do not allow to cover certain parts of 
design. The following flow support was implemented:  

- Collect Formal coverage including line, FSM, toggle 
coverage: 

o For Formal environment with disabled 
constraints; 

o For regular Formal environment with 
constraints; 

- Compare the coverage results to ensure there is no over-
constraints. 

4) Observability Checkers coverage. 
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This step is to ensure that all parts of design are actually 
checked by at least one checker. The step is more dependent 
than the other steps on Formal Tool which could help to 
collect such information.  

Some tools could collect Proof-Core coverage for a 
checker which covers constructs really affecting particular 
checker results. The Proof-Core coverage per checker is 
merged for DUT. 

Another approach which could be used along or without 
Proof-Core coverage and we applied is mutation coverage. 
It requires more time but gives more confidence. It could be 
implemented outside of Formal Tool. We use in-house 
mutation run script with the following base algorithm: 

- Do the following for every flip-flop in the design 
(for data buses it could be restricted to only LSB 
and MSB bits): 

o Inject bug into design; We used constant 0 
for the flip-flop;  

o Do Formal proof; 

o Ensure that some checker fails. 

It could be easily implemented, fast enough, gives extra 
confidence for Formal and much more than regular code 
coverage for simulation. 

D. Reuse 
Reuse is important part of any flow. We have some reuse 

components in place and some to be implemented including: 

- Components instantiated inside Formal 
Environment: 

o  FIFO, 

o Pipeline / Delay component, 

o Components supporting Formal methods: 
Floating Pulse, Wolper; 

- Deign abstraction models: 

o Memory, 

o FIFO. 

VI. CONCLUSIONS 
Formal Verification could be successfully used along 

with simulation in various applications.  

We got the most benefits using end-to-end Formal 
Verification for design modules of decent size with big 
number of combinations of packet flow parameters and 
corner cases. It allowed to find corner case bugs & increase 
verification quality. 

In order to reach results we had to establish consistent 
Formal Verification flow, including coverage flow and 
apply techniques which help to fight with FV complexity. 
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Практические аспекты формальной верификации проектов 
блоков сетевых СБИС 

А.А. Сохацкий 

Сиско Системс Инк., asokhats@cisco.com 
Аннотация — Формальная верификация в наши дни 
становится важной составляющей верификации 
проектов цифровых блоков в особенности в областях, 
предъявляющих повышенные требования к качеству 
проверки. Так сетевые СБИС должны фунционировать 
безошибочно без перерывов в течении длительного 
времени, при том, что перепроектирование и повторное 
изготовление этих коплексных микросхем требует 
существенных затрат.  Довольно сложно проверить 
функционирование на всех возможных входных 
последовательностях путем моделирования при наличии 
множества граничных условий связанных с различной 
длиной и выравниванием пакетов,  комбинациями 
значений входных настроечных портов и регистров. 
Формальные методы должны помочь достичь полноту 
проверки и сократить время разработки, но это требует: 

- правильной стратегии выбора блоков и модулей 
проекта для формальной верификации, а также 
метода формальной верификации; 

- применения решений для ответа на проблему 
экспотенциального роста времени формального 
доказательства в зависимости от глубины 
доказательства; 

- последовательной методологии для обеспечения 
верификационного покрытия и сокращения затрат. 

В статье рассматриваются вопросы формальной 
верификации на основе опыта работы автора в компании 
Сиско Системс Инк. и консультаций поставщика услуг 
формальной верификации компании OSKI Technology. 
Излагаются следующие аспекты: 

1) Краткий обзор применений формальной 
верификации. При этом статья фокусируется на 
задаче полной (sign-off) сквозной проверки (end-to-
end check) отдельных модулей проекта. 
Рассатриваются вопросы выбора модулей для 
формальной веривикации; 

2) Структура простого окружения для формальной 
верификации; 

3) Методы, позволяющие увеличить глубину 
доказательства, в частности, использование 

символических переменных, символического выбора 
элемента последовательности с применением 
плавающего импульса (floating pulse), метод Волпера 
(Wolper), использование абстрактных моделей; 

4) Аспекты методологии формальной верификации, 
включая технологии планирования, 
документирования, исполнения и регрессионных 
последовательностей, покрытия проекта, 
совместного использования для формальной 
верификации и моделирования  

Ключевые слова — СБИС, формальная верификация, 
моделирование, RTL, SystemVerilog, SVA. 
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