DOI 10.31114/2078-7707-2018-2-16-22

Practical Aspects of Formal Verification of Networking Chips
A.A. Sokhatski
Cisco Systems Inc., asokhats@cisco.com

Abstract — Formal Verification (FV) is becoming now
important part of Design Verification (DV) especially for
areas which has higher requirements for quality of chips such
as networking chips which should work 24x7 without failures
while re-spin cost for huge chips is high. It is difficult to cover
all possible scenarios by simulation having a lot of corner
cases for packet alignments, sizes, combinations of values of
configuration ports and registers. Formal Verification should
be able to help to improve quality and reduce Time to Market
but it requires:

- Selection of right scope, candidate and method for
Formal Verification;

- Addressing Formal challenges, main of such is fighting
with complexity and exponential grow of proof time with
each proof cycle;

- Consistent Methodology to ensure verification coverage
and to reduce effort.

The paper goes through those aspects basing on experience at
Cisco Systems Inc. with help from OSKI Technology [1],
Formal Verification service provider and Formal sign-off
company[2]. The paper covers:

1) Brief review of Formal Applications while concentrating
on End-to-End Formal sign-off for Design Modules along
with criteria for selection of good candidates for Formal;

2) Structure of simple Formal Environment;

3) Methods helping to fight with complexity which author
found especially useful for data transport modules of
networking chips, such as floating pulse method, Wolper
method, use of abstraction models;

4) Formal methodology aspects including:

- Document and test plan flow;

- Run Flow, Regression & Scripting;

- Coverage Flow;

- Reuse for Formal & Simulation.

Keywords — Design Verification, Formal Verification,

SystemVerilog, SVA.

l. INTRODUCTION

This paper is primarily based on the experience in
Design Verification of networking chips at Cisco Systems

Inc. There is good history of using Formal Verification at
Cisco. However in our department we found that we need
more consistent shared flow and infrastructure support. We
started from training from OSKI Technology, recognized
experts delivered Formal Verification services, and then
worked on establishing Formal Methodology.

Formal Verification now is a good complimentary to
simulation based Design Verification [3]. It has advantages
such as:

- High quality: potentially exhaustive proof for
implemented checkers for any legal input sequence and
configuration combinations; is able to catch corner case
bugs;

- Typically less time to setup and verify; could be started
by designer at early stages.

On the other hand it has the following restrictions and
challenges:

- Restrictions on design complexity and input sequence
length;

- Might require application of special techniques to fight
with complexity which needs expertise;

- Time to closure is hard to predict, sometimes it’s even
difficult to tell if design if suitable for FV.

The key point is to select right FV application, level and
design entity.

Il. FORMAL APPLICATIONS & DESIGN SELECTION

A. Formal applications types

Formal applications [4], [5] could be classified by
objective, automation and effort from user, in particular:

1) Automated Formal Linter which doesn’t require
writing user code but allows to find such issues as array
boundary violation, multiple active drivers for the signal;
some tools consider check for dead code, etc. from the next
section also as part of Automated Formal check;

2) Formal Apps for particular verification aspects
including:

- Formal Coverage Analysis (FCA) [6]: allows to find
dead code, unreachable FSM state, etc.; we made it as
part of DV Flow; pretty useful for simulation coverage

closure;
- Connectivity Check: allows to describe in simple way
source, destination points and conditions for

MES-2018. Russia. Moscow, October 2018. © IPPM RAS

16

connectivity checks; easy to apply, could be used at
different levels including chip level,

- X-Propagation: allows to find RTL issues even before
simulation started, especially critical for X-optimism
when RTL simulation shows concrete value instead of
X

3) Assertion Based Design Exploration / Bug Hunting:
assumes writing some number of checker assertions (along
with assumptions and coverage assertions) and trying to
prove them; it could be used from early stage of the project
by designer to late stage by DV engineer, some applications
are listed below:

- Designer or DV engineer describes assertions for DUT
interfaces; for input interfaces assertions should be
turned later to assumptions by Formal Tool commands;
for standard interfaces Assertion VIP could be used if
available; Formal Tool should be able to check
compliance with interface protocols [7]; internal
assertions for modules could be added by designer and
verified as well;

- Designer could add to that coverage assertions
exercising some simple or corner-case scenarios and
get waveforms without running simulation;

- At later stage of the project along with simulation DV
engineer could write specific assertions to hit and verify
corner case scenarios and close coverage; advanced
Bug Hunting techniques could use as initial state for
Formal proof, state, where design comes after some
simulation cycles;

- During top-level simulation or even while exercising
manufactured chip there could be found issues which
require reproducing them; Formal could help here and
also ensure that fix is complete;

4) Equivalence Check: assumes comparison between
reference design / model and design to be verified;
historically it was one of the first widely used Formal
applications to check equivalence between RTL and
synthesized code; now dedicated tools are introduced which
do comparison between two RTL designs or even with C-
model; this application requires RTL / accurate reference
model;

5) End-to-end sign-off check of design modules basing on
SVA assertions which assumes exhaustive verification at
some scope.

While all Formal applications are pretty beneficial, the
paper is focusing on the End-to-end sign-off Formal
Verification which could replace simulation for certain
design modules, release DV engineering resources and
exhaustively check design at that level. Formal could be
applied at different levels including architectural. The paper
primarily talks about Formal Verification of RTL design
code.

B. Design Block selection for Formal Verification

Due to Formal Verification complexity & potential
exponential grow of Proof time for each next clock cycle
because of exhaustive nature of Formal proof, special care
needs to be taken when selecting modules for Formal proof.

17

The following factors need to be taken into account
when identifying modules for formal proof:

- Type of the design, best fit is control or data transport
design; data transform design having multipliers, wide
adders inside is difficult for Formal model check, for
this type of design equivalence check might work;

- Complexity of design: size of design should be decent,
pipeline depth and input sequence for verification
should not be too long; it is difficult to give certain
numbers as it depends on functional complexity,
symmetry of design, used Formal Tool, etc., just some
example of design proven by FV has several thousands
of flip-flops, several hundred inputs, summary of
pipeline depth and input sequence to prove — around 20
cycles;

- How much benefits we are getting from Formal
comparing to simulation: number of corner cases,
configuration combinations, is it reuse block which
should work in different modes and should be
exhaustively verified,;

- Status and history of verification: if previous version
was verified via simulation, how different is the new
one; what is simulation coverage; were any bugs found
after simulation verification done.

After identifying candidates, evaluation and planning
needs to be done including:

- Measuring design complexity: number of flip-flops,
delay;

- Better understanding design, parameters;
- Matching skill set of available FV resources.

Formal Environment for end-to-end check targeting
sign-off typically includes:

STRUCTURE OF SIMPLE FORMAL ENVIRONMENT

- Interface components implemented protocol checks;
- End-to-end checkers.

Structure presented in the figure below.

DUT
» »
A A = ¢ >
\ 4
Input Output
Interface Interface
Component Component
End-to-end
L, Checkers 44

»
»

Figure 1. Simple Formal Environment Structure
Interface component features and applications:
- Located in separate modules;

Contains SVA checker assertions, assistant code and
coverage assertions, no assumptions;

- Assertion naming convention should reflect direction,
for example source-destination: src__dst_<name>; it
is critical when signals of both directions are integrated
inside the same interface;

- Assertions changed to constraints (assumptions) from
inside Formal environment script for input signals /
Input Interface Components;

- Interface components instantiated inside simulation
environment as well as in Formal which is especially
important for Input Interface Components to check for
over-constraints (failure of assertion in simulation is
sign of over-constraint);

- Interface Components could contain intermediate
results which could be used inside End-to-end Checkers

End-to-end checker features:

- Typically more complex than Interface Components
and require special methods to fight with complexity
and exponential time grow; the methods are described
in the next section;

- Could use
Components.

intermediate results from Interface

As an example of data transport module from
networking chip we’ll take Delimiter Removal module
which converts one packet protocol with Start-Of-Packet
(SOP) — End-Of-Packet (EOP) delimiters located inside data
flow to another protocol which has those signals located in
separate signals. Next figure illustrates the simplified
function. In real life the protocols are more complicated:
there are several bytes passed each cycle; packet with low
priority could be interrupted by packet with high priority.

‘ sop | p0 | p0 | p0 | eop | idle ‘ sop ‘ pl | pl | eop |

m 3 m
w [m

’pO ’pO ‘pO \idh |idk lidk |p1 |p]|

sop

data

Figure 2. Simplified function of Delimiter Removal Module

Here Input Protocol is more complex and requires
functions to extract SOP-EOP flags from data stream using
assistant Verilog code. The results could be used by End-to-
end checkers.

IV. METHODS TO REDUCE PROOF TIME

Formal Verification exhaustively verifies design for any
legal combination of inputs and design states. It starts from
initial state (typically after reset) and checks behavior for
any combination of input signals. Then goes from the set of
reached states and checks any combinations of inputs again,
etc. That is why each next step (clock cycle) proof could
take same amount of time as for all previous steps together
leading to exponential grow of proof time depending on
proof depth (number of clock cycles). It makes sometime

18

non-realistic to get full proof or reach required proof depth
in reasonable time. There are several approaches how to
fight with that by reducing proof complexity. Some of them
are described below.

A. Use of symbolic variables

Basic idea: we are tracking and checking only one
arbitrary instance of design or sequence item selected by
symbolic variable. It could significantly reduce proof time.
Note that we are not extra restricting input space but
allowing any legal input sequences.

For example, if we have several input ports and several
output ports we could track only transactions which go from
some arbitrary selected input to some arbitrary selected
output port. Selected variable values should be unchanged
through the proof.

Symbolic variables also could be used to select one
arbitrary bit inside byte, for example:
wire [2:0] sym_data_bit;
sym_data_bit_stable: assert property (
##1 (sym_data_bit == $past(sym_data_bit)
)
B. Selection of sequence item with Floating Pulse method

Here we are tracking and checking only one sequence
item, it could be byte, it could be packet or another
transaction. Floating pulse is binary signal which is
constrained to be active during any but only one cycle. It
selects the sequence item.

Item which is going to be tracked is typically marked
(colored) at the input — so we should be able to detect it at
the output. One bit could be used for coloring data byte. That
bit has inactive (typically 0) value for all bytes except
colored byte when the bit has active (typically 1) value. It is
done via constraints (SVA assumptions).

Here is illustration of application of floating pulse
method for Delimiter Removal Module.

L
(]

L | [e2] [e] |

3
]
[B

Figure 3. Floating Pulse method application

|E0p‘

L
[

N

|iﬂe|

Example of code for generation of floating pulse:

wire floating_pulse;

reg floating_pulse_reg;

always @ (posedge clk) begin
if (reset)

floating_pulse_reg <=
else if (floating_pulse)
floating_pulse_reg <= 1°b1l;
floating_pulse_model: assert property (
floating_pulse_reg |-> !floating_pulse

17b0;

);

Example of code for coloring bit O inside input byte:
color_bit: assert property(
@(posedge clk) disable iff (reset)
data_bus[0] == floating_pulse
)

In the discussed Formal environment Floating Pulse
method used in the following checkers:

1) Check that any valid input byte after some number of
cycles is detected at the output (Forward Progress Checker):
additional counter is used which counts valid cycles after
floating pulse before colored byte is detected at the output;
counter value is compared with pipeline depth via assertion;

2) Check that packet boundary is preserved at the output:
at the input we arbitrary color first byte of a packet and then
check that colored byte is still the first at the output

Another method described below is used to check byte
contents and bytes order.

C. Using Wolper method to check data contents and
order

Wolper method colors two consecutive items at the
input and checks that only two consecutive items are colored
at the output. For completeness both 0 and 1 should be used
for coloring. This method allows to prove that data contents
and order is preserved, no drops, no injections.

It is used in the discussed environment for that purpose.

Complication here though for Delimiter Removal
Module is that it should maintain order of bytes within
certain packet priority but packets of low priority could be
interrupted by higher priority packet. That is why two
consecutive bytes of low priority packets could be apart. It
requires additional proof depth and extra care. So it makes
difficult to reach required proof in reasonable time. Case
splitting approach described below is used to resolve it.

D. Splitting Checkers

Idea behind that technique is to reduce complexity —
Cone of Influence (COI) of each checker. It could be done
different ways:

- By slitting property when complex expression is used
on the right side of implication;

- By defining separate checkers for different functional
aspects, for example, different operations;

- By defining separate checkers for different modes;

- Using Assume-Guarantee approach with selecting
internal points and defining checkers to and from
internal points

19

In the discussed Formal environment we had to fix
values of some symbolic variables used along with Wolper
method and run Formal proof for various values separately.
For example position of bit inside byte was fixed to certain
value, position of byte inside input bus was fixed. Note that
in some cases after design analysis and discussion with
designer, conclusion could be made that it is enough to make
proof only for some corner case values of symbolic
variables, for example first and last bit position.

In the following couple of sections we are discussing
aspects of design abstraction models restricting them to few
typical examples.

E. Reset Abstraction Model

It is difficult or sometimes not possible to reach large
proof depth in reasonable time. On the other hand we need
to ensure that design is working properly from any state
even if it requires long sequence to reach that state.

For example, design has wide counter and action
happened when counter reaches some big value. If we start
at reset state then big number of cycles is required to
exercise the action.

The idea behind Reset Abstraction is to make action
state closer. To make it happened instead of getting initial
value at reset we are allowing any value. So counter could
get high value right at reset and action could be verified.
Special care might need to be taken to sync other signals
with arbitrary reset value.

Here is example from the discussed Formal environment.
Here we have packet length counter which is reset for every
new packet and if packet count reaches certain configurable
value, packet should be marked with error and truncated.
Reset abstraction leaves value at reset not driven but keep
all other functionality not touched. This is illustrated in the
next figure.

Next data

DUT
Reset value cnt

0

Reset signal

DV
Reset value cnt
not driven

Figure 4. Example of Counter Reset Abstraction

F. Memory & FIFO Abstraction Models

Other typical examples of abstraction models which are
used to reduce proof complexity are Memory & FIFO
Abstraction models.

Example of Memory Abstraction Model:

- Maintains data only for one symbolic address : writes
and reads data when actual address matches the
symbolic one;

- Returns random data for all other addresses.
Examples of FIFO Abstraction Model:

- Use symbolic “any” depth of FIFO: it will allow to
reach full condition earlier;

- If depth cannot be compromised and made symbolic,
then use reset abstraction for read and write pointers
and sync other signals with them;

- Keep track of only one data entry selected by floating
pulse or by colored bit inside the data

V. FORMAL METHODOLOGY ASPECTS

A. Documents & Test Plan Flow

Formal Verification is less standardized than simulation.
That is why having good set of documentation is especially
important for knowledge transfer.

We developed some number of documents for the
Formal flow support including:

- Formal Verification Process Description which
describes phases and milestones from Formal Planning
to Formal Complete, focus and exit criteria for each
phase including reviews and approvals of checklists;

- Formal Milestone Checklist for different milestones to
ensure that nothing is missed; examples of checklist
items: “Reviewed Required Proof Depth with
designer”, ”All tests in Formal regression passed”;

- Formal Environment Template, including description
of Interface Components; End-to-end Checkers, Test
bench Configurations, Interesting scenarios, etc.

- Test Plan template.

Test Plan is supported by in-house tool and shared with
simulation. In the Test Plan some intends could be covered
by simulation and some intends could be covered by Formal
verification methods. Test plan metrics contain references to
actual code: for Formal proof metrics we require reference
not just to check assertion but also to coverage assertion.

B. Run Flow, Regressions & Scripting

One could use just Formal Tool to run Formal tests
especially at initial stages with GUI. However at some point
typically you need to run Formal tool for different
constraints, parameters, etc. Eventually you will have
regression list which will be run in batch mode.

In-house script simplifies passing tests to Formal tool,
setting signals and parameters, selecting assertions. The
same script is used for running simulation as well.

From our experience it is difficult to get full proof for
end-to-end checkers but bounded proof for certain number
of cycles could be enough. That is why it is important to
analyze design and calculate Required Proof Depth (RPD)
taking into account:

- Pipeline depth / Latency of the design;

- Results of Microarchitecture Analysis with and without
designer;

20

- Length of input sequences which require proof
including sequences for interesting corner case
scenarios.

If Formal proof reaches RPD when proving checker or
coverage property, we could consider that property is
proven; if all properties are proven then the test passes.
Support for defining and checking RPD is part of the flow.

We have regression support shared with simulation
which allows to run set of tests with various combinations
of configuration values when needed for case splitting.

C. Coverage Flow

Formal covers all possible combinations of input
stimulus and states inside Cone Of Influence (COIl) of
particular checker assertion but we need to ensure that all
design constructs are covered, there is no over-constraints,
there is enough checkers, so they are able to catch DUT
bugs.

We used the following techniques / rules to get
confidence that DUT is formally verified:

1) Interesting scenarios
Coverage properties should be implemented to ensure
that “interesting” corner case scenarios could be reached
within RPD. It is recommended to include check for output
results and ensure that design comes to idle state. Here is
some example below:

intscen_interleave_cover: cover property (

// input sequence

(Srdy && S_intf.sop && (S_intf._pri==PRI_MC))##1
(Srdy && S_intf.sop && (S_intf.pri==PRI_UC))##1

##[1:PIPE_DELAY]

// output results & state

((uc_cnt==2) && (mc_cnt==2)&& D_intf.idle)
);

2) Coverage for each group of checkers
Each group of checker assertions should be
accompanied by coverage assertions to ensure hitting corner
case scenarios

3) Controllability Input Stimulus coverage.
Main purpose here is to ensure that there is no over-
constraints which do not allow to cover certain parts of
design. The following flow support was implemented:

- Collect Formal coverage including line, FSM, toggle
coverage:

For Formal environment with disabled

constraints;

(0]

o For regular Formal environment with

constraints;

- Compare the coverage results to ensure there is no over-
constraints.

4) Observability Checkers coverage.

This step is to ensure that all parts of design are actually
checked by at least one checker. The step is more dependent
than the other steps on Formal Tool which could help to
collect such information.

Some tools could collect Proof-Core coverage for a
checker which covers constructs really affecting particular
checker results. The Proof-Core coverage per checker is
merged for DUT.

Another approach which could be used along or without
Proof-Core coverage and we applied is mutation coverage.
It requires more time but gives more confidence. It could be
implemented outside of Formal Tool. We use in-house
mutation run script with the following base algorithm:

- Do the following for every flip-flop in the design
(for data buses it could be restricted to only LSB
and MSB bits):

0 Inject bug into design; We used constant 0
for the flip-flop;

o Do Formal proof;

0 Ensure that some checker fails.

It could be easily implemented, fast enough, gives extra
confidence for Formal and much more than regular code
coverage for simulation.

D. Reuse

Reuse is important part of any flow. We have some reuse
components in place and some to be implemented including:

- Components instantiated inside Formal
Environment:
o FIFO,
o0 Pipeline / Delay component,

o Components supporting Formal methods:
Floating Pulse, Wolper;

- Deign abstraction models:

o Memory,
o FIFO.
VI. CONCLUSIONS

Formal Verification could be successfully used along
with simulation in various applications.

21

We got the most benefits using end-to-end Formal
Verification for design modules of decent size with big
number of combinations of packet flow parameters and
corner cases. It allowed to find corner case bugs & increase
verification quality.

In order to reach results we had to establish consistent
Formal Verification flow, including coverage flow and
apply techniques which help to fight with FV complexity.

ACKNOWLEDGEMENTS

Author thanks OSKI Technology team who delivered
training on Formal Verification and helped to establish FV
flow and his colleagues from Cisco Systems who worked on
development of the flow.

REFERENCES
[1] Oski Technology. Formal Verification Methodology to
enable Formal Sign-off. Available at

http://www.oskitechnology.com (accessed 03.05.2018)
[2] Singhal V. The evolution of Formal Verification Sign-off.
Auvailable at
https://www.cadence.com/content/dam/cadence-
www/global/en_US/documents/company/Events/jug/secure
d/jug-2017/wed-9-30am-fv-signoff-evolution-oski.pdf
(accessed 03.05.2018)
Sokhatski A.A. Practical Aspects of Design Verification of
Complex Chips // Problems of Perspective Micro- and
Nanoelectronic Systems Development - 2016. Proceedings /
edited by A. Stempkovsky, Moscow, IPPM RAS, 2016.
Part2. P. 16-23.
Seligman E., Schubert T., Kumar A.K. Formal Verification:
An Essential Toolkit for Modern VLSI Design. Waltham,
MA, USA: Elsevier, 2015, 352P.
Murphy B., Pandey M., Safarpour S., Finding Your Way
Through Formal Verification. Danville, CA, USA:
SemiWiki LLC, 2018, 133P
[6] Tatarnikov Y., Labib K. Using Synopsys VC Formal Coverage
Analyser (FCA) for Code Coverage Improvement. Available
at https://www.synopsys.com/community/snug/snug-

(3]

(4]

(5]

silicon-valley/location-proceedings-2016.html (accessed
03.05.2018)

[7] Tatarnikov Y., Labib K. Next step of Formal Verification
utilization Auvailable at

https://www.synopsys.com/community/snug/snug-silicon-
valley/location-proceedings-2018.html (accessed
03.05.2018)

http://www.oskitechnology.com/
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/jug/secured/jug-2017/wed-9-30am-fv-signoff-evolution-oski.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/jug/secured/jug-2017/wed-9-30am-fv-signoff-evolution-oski.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/jug/secured/jug-2017/wed-9-30am-fv-signoff-evolution-oski.pdf
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html

VJIK 519.714

[IpakTHdeckue acreKThl (popMaabHOM BeprU(PUKAIIUKA ITIPOCKTOB
ookoB cereBbiXx CBUC

A.A. Coxanxui

Cucko Cucremc Muk., asokhats@cisco.com

Annomayua — ®dopmajbHasi BepupUKAUUs B HAIUH THU
CTAHOBUTCS Ba)KHOM cocTaBjsomeil BepupuUKanuu
NPOEKTOB HU(PPOBBLIX 0JIOKOB B 0COOEHHOCTH B 00J1aCTHX,
NpeIbsIBJISIOIIUX MNOBbILIEHHbIE TPe0OBAHUS K Ka4yecTBY
nposepku. Tak cereBble CBUC no/ikHBI (PYHIHOHHPOBATH
0e30mm60yHO 0e3 mnepepbIBOB B TeYeHHUHM [JIMTEIbHOIO
BpeMeHH, IPH TOM, YTO NepPenpoeKTHPOBAHUE M MOBTOPHOE
M3rOTOBJIEHME JTHX KOILUIEKCHBIX MMKpoOcXxeM Tpedyer
CyLIeCTBEHHBIX 3aTpar. JlOBOJIbHO CJIOKHO NPOBEPUTH
(pyHKIHOHUpOBaHHE Ha BceX BO3MOXKHBIX BXOJHBIX
MOCJIeI0BATEIbHOCTAX MyTeM MOJEIUPOBAHNUS NPH HAJIMYUU
MHO’KeCTBA I'PAHUYHBIX YCJIOBMii CBSI3AHHBIX € Pa3jJM4HOMI
JUIMHOW W BbIPABHMBAHUEM IMaKeTOB, KOMOMHAIUSMH
3HAYeHUH BXOJHBLIX HACTPOEYHLIX INOPTOB M PErHcTPOB.
dopMajibHble METOABI JO0JKHBI MOMOYb JOCTUYbL MOJHOTY
NMPOBEPKH U COKPATUTH BpeMs pa3paboTKH, HO ITO TpedyeT:

- NpaBWIBHOIl cTpaTernu BbIOOpa O0J0KOB M MoayJiei
npoekta s (GopMalbHOH BepupUKALMU, a TaKkKe
MeToAa (popMasibHON Bepudukauum;

- NpUMeHEHHMs PpeUIeHHii s O0TBeTa Ha mpodJemy
IKCHOTEHUHAJIBHOIO0 POCTAa BpeMeHH (POPMAIBLHOIO
J0Ka3aTeJIbCTBA B 3aBHCHMOCTH OT IUIYOMHBI
J0Ka3aTeNIbCTBA;

- TOCTeA0BATENLHOH MeTONOJOTHH JUIsi olecredYeHust
BepU(HUKAIMOHHOT0 MOKPBITHS H COKPAaILleHHs 3aTpaT.

B cratbe paccmaTpuBaloTcsi Bompochl (hopMasIbHOM
BepU(HKAINH HA 0OCHOBE ONBLITA Pa00THI ABTOPA B KOMIIAHUH
Cucko Cucremc UHK. U KOHCYJbTAIMI MOCTABLIIUKA YCJIYT
dopmanbnoii Bepupukauun komnanuun OSKI Technology.
HznaraioTes cieaymomue acneKTbl:

1) Kparkuii 0030p NpUMeHEeHMIi dopmanbHoii
Bepuuxkanun. Ilpu 3ToM crarbs ¢okycupyercs Ha
3aja4ye moJiHoi (sign-off) ckBo3Hoii nmpoBepku (end-to-
end check) 0TAeJbHBIX MoayJiei NpoeKTa.
PaccaTtpuBaloTcsi Bompockl BbIOOpa MoayJeid s

¢opmaibHON BepUBUKALMY;

2) CrpyKTypa 0poCTOro okKpyxeuusi s ¢opMaabHOit

BepupUKALUN;
3) Meronpl, MO3BOJISIOIHE YBEJMYHUTH rJIyouHy
10Ka3aTeJIbCTBA, B YACTHOCTH, HCHOJIb30BaHHE

22

CHMBOJIMYECKHX IlepeMeHHBIX, CHMBOJHYECKOI0 BbIGOpa
3JIEeMEHTa MOCJeI0BATEJBHOCTH € NPUMeHeHHeM
miaBaouiero ummny.abca (floating pulse), merox Boinepa
(Wolper), ncnonb3oBanue aGcTPaKTHBIX MO/eJIeid;

4) AcnekTbl MeTomosoruu (opmanbHoii Bepudukanuu,
BKJIIOYAs TEeXHOJIOTHH MJIAHUPOBAHHS,
JOKYMEHTHPOBAHHUS, HCHOJHEHHSI W PpPerpecCHOHHBIX
nocJjie0BaTeIbHOCTEH, MOKPLITHSA MPOeKTa,
COBMECTHOI0 HCHOJb30BaHUS Jas ¢opMaabHOii

Bepmlmlcam/m U MOACJIUPOBAHUSA

Kniouegvie cnosa — CBUC, popmanbHas Bepudukanus,
moneauposanue, RTL, SystemVerilog, SVA.

JIUTEPATYPA

[1] Oski Technology. Formal Verification Methodology to
enable Formal Sign-off. Available at
http://www.oskitechnology.com (accessed 03.05.2018)

[2] Singhal V. The evolution of Formal Verification Sign-off.

Available at

https://www.cadence.com/content/dam/cadence-

www/global/en_US/documents/company/Events/jug/secure
d/jug-2017/wed-9-30am-fv-signoff-evolution-oski.pdf

(accessed 03.05.2018)

Coxamkuit A.A. IIpakTHdeckue acHeKTHl BepH()UKaIUH

npoektoB CBUC // TIpobGnembl pa3paboTKu NepCreKTUBHBIX

MHKPO- U HaHOAJIEKTPOHHBIX cucteM (MOC). 2016. Ne2. C.

16-23.

Seligman E., Schubert T., Kumar A.K. Formal Verification:

An Essential Toolkit for Modern VLSI Design. Waltham,

MA, USA: Elsevier, 2015, 352P.

Murphy B., Pandey M., Safarpour S., Finding Your Way

Through Formal Verification. Danville, CA, USA:

SemiWiki LLC, 2018, 133P

[6] Tatarnikov Y., Labib K. Using Synopsys VC Formal Coverage
Analyser (FCA) for Code Coverage Improvement. Available
at https://www.synopsys.com/community/snug/snug-
silicon-valley/location-proceedings-2016.html (accessed
03.05.2018)

[7] Tatarnikov Y., Labib K. Next step of Formal Verification
utilization Available at
https://www.synopsys.com/community/snug/snug-silicon-
valley/location-proceedings-2018.html (accessed
03.05.2018).

(3]

(4]

(5]

http://www.oskitechnology.com/
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/jug/secured/jug-2017/wed-9-30am-fv-signoff-evolution-oski.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/jug/secured/jug-2017/wed-9-30am-fv-signoff-evolution-oski.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/company/Events/jug/secured/jug-2017/wed-9-30am-fv-signoff-evolution-oski.pdf
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html

	I. Introduction
	II. Formal Applications & design selection
	A. Formal applications types
	B. Design Block selection for Formal Verification

	III. Structure of simple Formal Environment
	IV. Methods to reduce proof time
	A. Use of symbolic variables
	B. Selection of sequence item with Floating Pulse method
	C. Using Wolper method to check data contents and order
	D. Splitting Checkers
	E. Reset Abstraction Model
	F. Memory & FIFO Abstraction Models

	V. Formal Methodology Aspects
	A. Documents & Test Plan Flow
	B. Run Flow, Regressions & Scripting
	C. Coverage Flow
	1) Interesting scenarios
	2) Coverage for each group of checkers
	3) Controllability Input Stimulus coverage.
	4) Observability Checkers coverage.

	D. Reuse

	VI. Conclusions
	Acknowledgements
	References
	ЛИТЕРАТУРА

