
MES-2018. Russia. Moscow, October 2018. © IPPM RAS
99

 DOI 10.31114/2078-7707-2018-2-99-101

Using Formal Coverage Analyzer for Code Coverage Improvement
Y.A. Tatarnikov

Independent Contractor, yuritatar@gmail.com

Abstract — This presentation summarizes the results of using
the tool grounded on formal proof technics (in this case the
tool is Synopsys Formal Coverage Analyzer (FCA)) to
improve code coverage for two design Blocks.

The goal is to find unreachable coverage constructs (UNRs) in
the target design Blocks and remove them from the list of
uncovered constructs. The removal of UNRs saves the
Designers and Verification Engineers the time needed to
achieve high level of code coverage.

FCA became part of the design and verification methodology
within our organization following its successful evaluation.

Keywords — Design Verification, Formal Verification,
SystemVerilog, SVA.

I. INTRODUCTION
At the end of verification, when you created and

debugged all tests from your test plan your block has some
level of coverage, but you need to reach ~ 100% code
coverage.

Most popular code coverage metrics are: line, toggle,
condition, FSM. Ultimately, you have to have 100% for
each of them.

It is responsibility of block Designer to get high level
code coverage. For it Designer makes the decisions of:
adding some tests OR to exclude some not covered
constructs. Verification guy helps him/her providing
existing coverage data base and coverage reports,
implementing new tests scenarios and/or excluding
coverage constructs. This process is iterative and takes
pretty much time, because usually you start with thousands
of uncovered constructs.

Any means to shorten the list of uncovered constructs
are welcome. Fortunately, we can get help from Vendors
Formal Proof tools, which usually have the special mode to
get unreachable coverage constructs (called UNRs), which
cannot be covered by any test for this particular block. One
of the tools is Synopsys Formal Coverage Analyzer (FCA),
which is part of Verification Compiler [1, 2].

Goal of this paper is to show briefly how to use this tool
and which results we got, why we included this tool in our
Design flow.

II. USE FLOW FOR GETTING UNRS
• You (verification guy) – run regression with coverage

enabled to get Coverage Data Base.

• FCA has Coverage Data Base as its input.

• You provide clock(s), reset(s) and reset durability OR
give simulation snapshot, which represents your Design
initial state.

• FCA selects uncovered coverage constructs (for line,
toggle, condition, FSM metrics) and tries to generate
timing diagram, which will cover them.

• If it can not find – this construct is uncoverable.

• FCA generates file with all unreachable constructs
(UNR).

• You put this file in the command, which reports
coverage, to exclude UNRs.

III. WHEN IS PROPER TIME TO DO THIS JOB
For FCA - less uncovered constructs - better.

For Verification Engineer proper time is when you have
finished the creation and debugging tests according to your
Test Plan. With good, detailed test plan code coverage
metrics (line, toggle, condition, FSM) might be on the level
70%-80%.

IV. BLOCKS USED FOR FCA EVALUATION
There are 2 blocks, which were under development at

the time of evaluation. Let’s call them “block A” and “block
B”.

In the terms of coverage constructs, block A looks like:

1. Lines - 1835

2. Conditions - 473

3. Signal bits (for toggle) – 27974

4. FSM states – 61
As you can see this Block is pretty small, but

functionally not easy.

 Block B:

1. Lines - 43988

2. Conditions - 13470

3. Signal bits (for toggle) – 672904

4. FSM states – 72

Block B looks ~ 20-30 times greater than block A.

100

V. BLOCKS A AND B COVERAGE BEFORE FCA
Table below shows coverage numbers of both blocks.

Fractions xxx/yyy in the table mean: xxx – not covered
constructs, yyy- total amount of constructs, (zz%) -
percentage of uncovered constructs.

Table 1
Code coverage before FCA

 Block A Block B

Lines 123/1835 (7%) 7035/43988 (16%)

Conditions 57/473 (12%) 2377/13470 (18%)

Toggle (bits) 315/27974 (
1%)

9013/672904
(1.5%)

FSM states 1/61 (1.5%) 3/72 (4%)
Total 496/30343 18428/730434

Comments to the table 1 (above):

• toggle is counted for each bit of each block signal. If bit
has both transitions: 0->1 and 1->0 - this bit is counted
as toggled. If one transition or no transitions – no toggle
for this bit.

• condition is one particular combination of input signals
for given expression. If, for example, we have
expression in source code (a && b) and for coverage
we have 3 combinations of input signals: 11, 01, 10 -
in this case we have 3 conditions.

• smaller block has better coverage –very usual situation
• most concern to improve coverage has to be about

condition coverage UNRs determined by FCA for
blocks A and B

Table 2

FCA results
 Block A Block B

Lines:
 found
 coverable
 uncoverable

123
93
30

7035
7035

0

Conditions:
 found
 coverable
 uncoverable

57
42
15

2377
131
2246

Signal bits:
 found
 coverable
 uncoverable

315
269
46

9013
8925
88

FSM states:
 found
 coverable
 uncoverable

1
1
0

3
3
0

FSM transitions:
 found
 coverable
 uncoverable

1
1
0

27
23
4

Total:
 found

 uncoverable

509

 91 (18%)

 18455
 2338 (12%)

Comments to the table above:

• most desired result of FCA is to get uncoverable
constructs to exclude them from coverage report
saving Designer and Verification Engineer time.
As you can see relative number of UNR is not
impressive, but look from other side: for block B
we excluded 2338 coverage constructs!!! Plenty of
manual analyzing time saved !

• Designer has to consider each uncoverable
construct (especially line and toggle) as the
potential source of Design redundancy

• FCA determined minimal amount of uncoverable
constructs, because we did not constrain any
Design inputs. In reality Design has some
interfaces with specific protocols, which cause
input ports dependencies, and some input
combinations become impossible. It will
potentially increase amount of UNRs, but requires
additional manual work to be done by creating and
debugging some constraints.

VI. COMPUTATIONAL RESOURCES
FCA run was done locally (not on computer farm), on

one Linux workstation, with 8 Xeon processors, each with 4
cores. Memory – 32GB.

FCA job used 1 processor with 4 cores, virtual memory
– up to 17GB.

For block A elapsed time is ~ 1 day job run.

For block B ~ 7 days job run.

VII. CONCLUSIONS
• It is worth to use – remember: found 2338

uncoverable constructs for block B.

• Preparation for FCA run is very minimal ~ 10 min
for me.

• FCA job is highly paralleled and running on network
can shorten job time.

• This tool became part of the design and verification
methodology within our organization following its
successful evaluation.

• This presentation is first step in Formal methods use
for verification. Next step has been done [3].

ACKNOWLEDGEMENTS
Author thanks my colleagues – Verification Engineers

of company SK Hynix memory solutions (San Jose, CA, the
USA), who reviewed previous versions of my presentation
and applied this approach to get their blocks coverage
improvements, sometimes getting even more impressive
results.

REFERENCES
[1] VC Formal Coverage Analyzer User Guide, Version K-

2015.09, September 2015, Synopsys

101

[2] VC Formal Verification User Guide, Version K-2015.09,
September 2015, Synopsys

 [3] Tatarnikov Y., Labib K. Next step of Formal Verification
utilization Available at

https://www.synopsys.com/community/snug/snug-silicon-
valley/location-proceedings-2018.html (accessed
03.05.2018).

УДК 519.714

Использование формального метода для улучшения покрытия
проекта оцениваемого с помощью метрики «code coverage»

Ю.А. Татарников

Независимый контрактор, yuritatar@gmail.com

Аннотация — Данная презентация представляет результаты
использования ППП «Формальный Анализатор» компании
Синопсис. ППП основан на методах формальных
доказательств.Определяются конструкции дизайна,
представленного на регистровом уровне, которые не могут
быть обнаружены любым тестом. Исключение этих
конструкций улучшает показатели тестового покрытия
дизайна. Анализ – составная часть технологии разработки
логического дизайна СБИС

Ключевые слова — СБИС, формальная верификация,
моделирование, RTL, SystemVerilog, SVA.

ЛИТЕРАТУРА
[1] VC Formal Coverage Analyzer User Guide, Version K-2015.09,

September 2015, Synopsys.
[2] VC Formal Verification User Guide, Version K-2015.09,

September 2015, Synopsys.
 [3] Tatarnikov Y., Labib K. Next step of Formal Verification

utilization. Available at
https://www.synopsys.com/community/snug/snug-silicon-
valley/location-proceedings-2018.html (accessed 03.05.2018).

https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html

	I. Introduction
	II. Use flow for getting UNRs
	III. When is proper time to do this job
	IV. Blocks used for FCA evaluation
	V. Blocks A and B coverage before FCA
	VI. Computational resources
	VII. Conclusions
	Acknowledgements
	References
	Литература

