DOI 10.31114/2078-7707-2018-1-63-68

SDF Report Generation Methodology for Digital Delay Lines

without Simulations

V.Sh. Melikyan, Z.M. Avetisyan, A.A, Hovsepyan, A.Kh. Mkhitaryan, A.K. Hayrapetyan, A.A.
Petrosyan, A.E. Mkrtchyan

Synopsys Armenia CJSC, Yerevan. Vazgen.Melikyan@synopsys.com,
Zaven.Avetisyan@sysnopsys.com, Aristakes.Hovsepyan@sysnopsys.com

Abstract — In this paper a methodology of report generation
for Digital Delay Lines (DDL) is presented. The mentioned
approach is based on DDL report generation using Perl
scripting without any Spice and Standard Delay Format
(SDF) simulations. The need for this kind of approach is since
generation of the DDL spreadsheets using Spice simulations
brings to a great loss of time, because parallel to the increase
of the number of elements, the extract netlists are also being
increased. The presented approach saves more time compared
to SDF simulations as well, because for large designs SDF files
have very big sizes, which causes increase of machine
resources and time for parsing and back-annotation of that
SDF files. The methodology suggested in this paper uses the
data of DDL SDF files to generate reports neglecting the
parsing and back-annotation of SDF files.

Keywords — DDR SDRAM; SDF parsing; SDF annotation;
DDL

l. INTRODUCTION

Because of its speed, pipeline features and burst access
synchronous dynamic random access memory (SDRAM) is
widely used in embedded system memory design. The
double data rate (DDR) is an improvement of the traditional
SDRAM. The benefit of DDR is transferring the data using
both edges of each clock which doubles the data transfer rate
of the RAM without a corresponding increase in clock
frequency. One of the advantages of keeping the slower
clock frequency is that the signal integrity requirements on
the circuit board connecting the memory to the controller are
being reduced.

As the sphere of DDR SDRAM grows very rapidly, the
requirements for the SDRAM controller are increasing. The
design and verification of the controller become more
complicated.

Connections between the SDRAM and the user interface
are being performed by SDRAM controller (Fig. 1) [1]. It is
created for providing appropriate commands for
initialization, read, write and memory refresh. The
controller makes it easy for the user to work with SDRAM
commands by converting the system interface to the user
interface of microprocessor.

For read operation, the data and strobe signals are
coming from SDRAM aligned by edges. As a result, data
and strobe signals should come to the controller at the same

time. To avoid setup/hold violations caused by the fact of
the same time arriving of the mentioned signals an internal
delay is performed in controller, which shifts the received
strobe to the center of the received data eye [2]-[4]. Ideally
the mentioned delay should be close to one fourth of the data
clock period, which will move the strobe close to the center
of data eye.

u addr ddr addr
udatai _ ddr ba
g ddrdg |
u cmd > _ ddr dgs
u_reset n > gdr dm :
User uck I DDR ddr ras n = DDR
interface controller ‘;grr @0) SDRAM
Wi »
d ddr csn =
PELE ata_o_ ddr_cke =
< u_data_valid ddr clk n .
u_ref clk ddr clk =
al »

Fig. 1. System level block diagram for SDRAM

CK, CK#

DQS, DQS#

’
DQS, DQS#
Delayed

DQ___|

Fig. 2. Data eye centering for read/write operations

For write operation, before transferring to SDRAM, the
controller must align the strobe signals to the center of data,
i. e. the strobe and data transitions are 90 degrees phase
shifted (Fig. 2) [2]-[4].

Digital delay line (DDL) circuit is proposed to generate
these desired delays for data strobe signals.
Il. DIGITAL DELAY LINE ARCHITECTURE

Nowadays it is very common to use all the digital delay
lines (DDL) [5]-[8], which should cover rather large range
of frequencies (from 400MHz to 3200MHz and more). All-

MES-2018. Russia. Moscow, October 2018. © IPPM RAS

digital delay lines are more tolerant to power-supply noise,
process-voltage-temperature conditions, are highly portable
across multiple processes. For these reasons, digital delay
lines are becoming more common in all-digital clock
generation, synchronization and distribution circuits.

DDLs are used in several DDR standards [9] to provide
appropriate phase shift (90 degrees) between data and strobe
signals during both read and write operations. In other
words, strobe signal is being centered into the data eye. In
some DDR PHYs DDLs are coming to replace the delay
locked loops (DLL). In DDL delay time is determined by
delay setting inputs. DDL delays the input signal by a delay
amount depending on the setting of tap select input (DDL
Select<8:0>). The DDL used in this work has overall 511
steps. When the tap select input code is being increased by
1, the DDL delay should increase by one step delay (average
5ps for the fast case in this work). The delay values must
always be increasing as delay setting value increases (Fig.
3). It is important for the delay line to be linear (i.e. that the
step size be constant for all valid delay select values). The
important thing is that the delay values are monotonic. From
Fig. 3 it can be seen, that for curve 2 the monotonicity is
violated, because on the delay to tap select dependency
curve there are regions, where the tap select increases, but
the delay is decreased.

Delay

—i—Valld measure

r ; = & = Invalid measure

Tap select

Fig. 3. Monotonicity of DDL

Considering the fact, that the average step in the fast
corner is about 5ps and the DDL has 511 steps, the delay
range of the DDL should be 2555ps (5ps x 511 steps).

As it can be seen from the block-diagram of DDL
architecture, used in this work (Fig. 4), fine-coarse delay
generation technics has been used in the design, which is
rather common in design of DDLs [5]-[8]. DDLs, which are
based on the fine-coarse technics, are widely used in low-
power applications and microprocessors, in high speed
SDRAM timing generation [4]. These kind of delay lines
have several advantages like wide operating ranges and low
power consumption.

The first stage of the DDL is the Fine delay block, which
is used to get rather small delay steps. Fine delay block is
being controlled by DDL Select<3:0> and is providing the
0-15 fine delay steps, each of which should be 5ps for the
fast case. After coming out from the fine block, the signal is
passing the stages of the Coarse block. A coarse delay
element (CDE) is being used to shift the input signal by
amount of time equal to 16 fine delays (80ps). So, it has no

64

need to have such a small and correct delay steps, as the Fine
block. Coarse blocks are being controlled by DDL
Select<8:4>. Each step-size is corresponding to one-
sixteenth of the coarse delay step size.

Constructions and architectures of several Fine/Coarse
delay elements can be found in [5]-[8].

DDL Select <8:06 +> Decoder
DOL Input
Fine Contral Coarse Control
Code Code 0"
Coarse Delay
Fine Delay

DDL Output

Fig. 4. Digital delay line architecture

Parallel to the increasing of the number of controller
elements, the extract netlists are also being increased. As a
result, generation of the DDL spreadsheets using Spice
simulations brings to a great loss of time. Therefore, new
methods have been prepared to deal with similar problems
over the years. It is more efficient to use the Standard Delay
Format (SDF) reporting method, which significantly
decreases the simulation time, but reduces the accuracy of
the results as well.

COMMON REPORTING APPROACH USING SDF

It is very helpful for the final state of design, where the
reports must be done from top level of design after
placement and routing, because spice simulations for that
step are very slow and require long machine time.

A. Standard Delay Format

The delay and timing information of electronic circuits
are being represented in SDF [10], which is a textual file
format. There are EDA tools, which generate the timing data
in SDF file. This information is important for almost any
stage of design process. SDF was designed to for
transferring timing information and constraints between
different EDA tools. Many SDF constructs are similar to the
ones in Verilog, because SDF was initially designed for the
use by tools, using Verilog language.

Timing constraints, delays, timing checks, timing
environment information, some scaling, environmental and
technology parameters can be included in SDF file, but the
cell and interconnect delays are the most typical parts of the
SDF file.

As an example, input to output delay paths for a
multiplexer (Fig. 5) and the corresponding part of SDF file
(Fig. 6) can be considered.

Fig. 5. Input/output path delay of a multiplexer

(INSTANCE mux)
(DELAY
(ABSOLUTE
(IOPATH ay (0.0225::0.0228) (0.0211::0.0213))
(IOPATH by (0.0221::0.0223) (0.0211::0.0213))
(IOPATH (posedge s) y (0.0253::0.0261)
(0.0294::0.0301))
(IOPATH (negedge s) y (0.0253::0.0260)
(0.0294::0.0300))

)
)

Fig. 6. A representative SDF file

B. Problems

Correspondence of the information, presented in SDF
file, to the timing models and design description is being
checked by an annotator. For each part of the design,
represented in SDF file, the timing model should be found.
Data in SDF file should be applied to the appropriate
parameters of the timing model. To apply the information in
SDF file to the corresponding part of the design hierarchy
the annotator is being used. Annotator is searching for the
parts specified in the SDF file starting at this hierarchy point.
The correspondence of the SDF file data with the design will
not be found out, if the SDF file is not prepared in the
mentioned way of usage [10].

It is very difficult to perform the dynamic simulation
with back-annotation on a large design. SDF files are rather
big and may run into gigabytes. Some difficulties may pop
up when parsing these kinds of SDF file with significantly
large sizes. There are different algorithms and
methodologies presented in literature which reduce these
kinds of issues connected with parsing and simulation times
[11]-[22].

C. Algorithms

It is known [11], that common EDA algorithms are
based on the idea of parallelism using multi-core processors.
This fact will cause increase of the time taken by the parser.
This is rather big present in all flow, which is causing a need

65

to make the parser performance better. A methodology for
efficient multi-trading of SDF parser is presented in [11].

The main challenge for the mentioned approach is to
find out the functions, which can be made thread-safe.
Based on this, the parsing flow is being divided into two
phases. The main processing phase can run in parallel, but
the post-processing phase cannot be parallelized [11].

In [12] a methodology is presented to improve
performance of gate level timing simulation. The static
timing analysis (STA) is being used at the block level. For
block-level timing the critical path delay, identified by STA,
is being used during simulation instead of actual cell delays.
For large designs the SDF back-annotation will take rather
long time and will have negative influence on the
performance of gate-level timing simulation. To improve
the performance of gate-level timing simulation, a hybrid
approach is suggested to be used [12].

V.

Considering all the mentioned problems, at the final
stage of design verification it is suggested to use the
methodology proposed within the scope of this work. It
helps to save machine time and resources.

PROPOSED APPROACH

SDF ecarner

[DDI identification
'd | N\
Mission mode
idantifiratinn
. J
'd | N\
DDL select
idantifiratinn
. | J
'd N\
Delay
idantifiratinn
. | J
'd N\
Excel spreadsheet
rraatinn
\\ J
All corners

are done

Fig. 7. Block-diagram of the basic program

The main purpose of this paper is to present a reporting
methodology for DDL’s spreadsheet used in a large design
without any simulations. This approach doesn’t suppose any

SDF annotations or parsing. This methodology is based on
pure script running.

The main program is performed in Perl scripting
language [13]-[14]. The list of all process-voltage-
temperature (PVT) corners in SDF format is being given as
an input for the program. After running the program gives
the output with an Excel spreadsheet, which contains DDL’s
tap select values with corresponding delays for each PVT
corner in separate tabs of an Excel spreadsheet.

A. Description of the basic algorithm

The main program uses the following steps to create an
Excel spreadsheet with the DDL delay distribution
information (Fig. 7):

1) Start: the algorithm is starting to work.

2) SDF corner selection: for any kind of design reporting
should be done for several set of corners. In this step a single
corner is being chosen from the corner list.

3) DDL identification: a subprogram identifies the DDL
from SDF file by its instance name and separates it for future
calculations.

4) Mission mode identification: for future calculations, a
subprogram determines the mission mode of DDL from the
values of input pins of the separated DDL instance.

5) DDL select identification: a subprogram determines tap
selects from the values of input pins and applies
corresponding decimal selects.

6) Delay identification: for any tap select a subprogram
identifies the delay value. The null delay value for DDL is
being identified as well.

7) Excel spreadsheet creation: the subprogram creates
different tabs in Excel spreadsheet (Fig. 8).

ff 1p155V_m40C | ss 0p945V_125C | s5 0p945V. m40C | tc_1p05V 25C | Charts

Fig. 8. Tabs of Excel spreadsheet

For each SDF corner a subprogram creates a new tab in
Excel spreadsheet and fills it with appropriate data (Fig. 9).

e select: this column indicates input tap select values
for DDL.

e delay: indicates the input to output delay of DDL.

e null_delay: indicates the insertion null delay of
DDL.

e step size: indicates the step size of DDL between
two sequential tap selects.

e delay: indicates the delay between the primary and
null delay outputs of DDL for each select.

e Average: indicates the average step size of all
delay selects.

Besides the tables, the subprogram creates a tab in
Excel spreadsheet for charts. In this tab charts are being
created, which display different dependencies between
parameters of DDL. DDL’s delay dependency on the tap
select (Fig. 10) and the dependencies of step sizes on the tap
select (Fig. 11) for the considered corners are being
generated in the report Excel spreadsheet. From chart of

66

delay dependences (Fig. 10) the monotonicity of DDL can
be seen.

8) Finish: if the program has calculated delay values for
all corners, it enters the finish state.

A B C D E F
1 |select delay(ps) null_delay step_size delay Average
2 0 193.1 192 -- 1.1 8.361328
3 1 198.8 192 57 6.8
4 2 205.9 192 7.1 13.9
5 3 2139 192 8 219
6 4 2222 192 8.3 - 30.2
7 5 2299 192 7.7 379
8 6 237 192 7.1 45
9 7 2431 192 6.1 51.1
10 8 250.3 192 7.2 58.3
Fig. 9. Excel spreadsheet view
000
000
5000
; 4000
'_21: 3000 —
e“wﬂx“(‘ 3
2000 -
000 rﬁ/—“‘"‘f
o/

Tap select

Fig. 10. Delay dependence on tap select of DDL
e ff_1p155V_md40C ——us_(p945V_125C

ss_OpS45V_md0C te_1p05V_25C

Step size (ps)

AVttt iviy e iy iyl il

Ta|.:s‘ele;t
Fig. 11. DDL step sizes dependence on tap select

B. Benefits of the proposed method

As it is described in previous sections reporting with
SDF simulations has parsing and back-annotation steps,
each of which brings to several problems connected with the
long machine time requirements. Proposed reporting
method doesn’t have mentioned problems and the reporting

is being done without simulations. Because of that this
method reduces machine time requirements.

The second benefit relates to simulation environment
creation. Usually there is a need for reporter to perform huge
work to create a right working environment for SDF
simulations. If for some projects there is only need to report
the DDLs’ delays and there is no created environment for
SDF simulations yet, by using this reporting method
reporter can avoid the environment creation.

V.

Some comparisons have been done between the DDL
results obtained with Spice simulations, common SDF
reporting approach and the proposed methodology (Fig. 12
and Table 1). The Spice simulation results have been
chosen as reference and the results got with the other
methodologies have been checked via these results.

RESULTS AND CONCLUSIONS

Delay |os|

DLY_Tyn_Saice

DLY_Fast_ma0_Spic

DLY_Fast_man_Serk

Delay (35

DLY_Slow_ma

Tap Select

c

Fig. 12. Comparison of DDL delay dependence on tap select
for 3 PVT corners

Comparison (Fig. 12) of DDL delay dependence on tap
selectin 3PVT (a-typical, b—FF, c— SS) corners for Spice
and the proposed method is done.

DLY_Slaw_rna0_Spic

67

All the comparison results got with Spice simulation,
common SDF reporting method and the proposed scripting
approach have been gathered in the Table 1. As it can be
seen from the mentioned table, results of the proposed
scripting method have minor differences from the SDF
simulation results. Using the proposed method helps to
reduce the machine resources and time compared with SDF
simulation approach (1320 times faster for slow case and
420 times faster for fast case).

Table 1

Comparative table of common and proposed
methodologies

Spice SDF Proposed
simulation simulation methodology

Average

step size 5.8/8.2/12.6 5.6/8.4/12.2 5.6/8.4/12.2
(Ff/tt/ss)
Minimum

step size 3.5/4.7/5.3 3/5/6 3.3/5.2/5.6
(Ff/tt/ss)
Maximum

step size 26.2/37.2/63.9 22/33/55 21.2/32.7/55.2
(Ff/tt/ss)

From the performed work it can be concluded, that
compared with the common SDF reporting methodology,
approach proposed in this paper helps to have significant
machine time and resources savings with minor changes in
results.

REFERENCES

[1] URL:http://www.latticesemi.com/view_document?docume
nt_id=3467 (access date: 12.04.2018)
[2] Chung CC., Chen PL., Lee CY. An All-Digital Delay-
Locked Loop for DDR SDRAM Controller Applications //
IEEE International Symposium on VLSl Design,
Automation and Test. 2006. P. 1-4.
Garside J.D., Furber S.B., Temple S., Clark D.M., Plana L.A.
An Asynchronous Fully Digital Delay Locked Loop for
DDR SDRAM Data Recovery // IEEE 18th International
Symposium on Asynchronous Circuits and Systems. 2012.
P. 49-56.
URL:https://www.micron.com/~/media/documents/products
[technical-note/dram/tn4605.pdf (access date: 12.04.2018)
Giordano R., Ameli F., Bifulco P., Bocci V., Cadeddu S.,
Izzo V., Lai A., Mastroianni S., Aloisio A. High-Resolution
Synthesizable Digitally-Controlled Delay Lines // IEEE
Journal of Solid-State Circuits. 2015. V. 62. Ne 6. P. 3163—
3171
Abdulrazzaq B.1., Halin I.A., Sidek R.M., Shafie S., Yunus
N. A., Kawahito S. Sub-Picosecond Jitter Resolution Wide
Range Digital Delay Line for SoC Integration // IEEE
International Circuits and Systems Symposium (ICSyS).
2015. P. 44-48.
Raha P., Randall S., Jennings R., Helmick B., Amerasekera
A., Haroun B. A Robust Digital Delay Line Architecture in
a 0.13um CMOS Technology Node for Reduced Design and
Process Sensitivities // Proceedings of the International
Symposium on Quality Electronic Design (ISQED). 2002. P.
148-154.
Sourikopoulos 1., Frappe A., Cathelin A., Clavier L., Kaiser
A. A Digital Delay Line with Coarse/Fine tuning

(3]

(4]
(5]

(6]

(7]

(8]

throughGate/Body biasing in 28nm FDSOI // IEEE 42nd
European Solid-State Circuits Conference (ESSCIRC).
2016. P. 145-148.

[9] URL: https://www.jedec.org/ (access date: 12.04.2018)

[10] The Institute of Electrical and Electronics Engineers, Inc.
IEEE Standard for Standard Delay Format (SDF) for the
Electronic Design Process. 2001.

[11] Shanbhag P., Gopalakrishnan C., Ghosh S. A Case Study in
Developing an Efficient Multi-threaded EDA Parser:

Synopsys SDF Parser // IEEE Computer Society Annual
Symposium on VLSI. 2012. P. 297-301.

[12] Ahmad T.B., Ciesielski M.J. Fast STA Prediction-based
Gate-level Timing Simulation // Proceedings of the IEEE
conference on Design, Automation & Test in Europe
(DATE). 2014. P. 1486-1492.

[13] Schwartz R.L., Foy B.D., Phoenix T. Learning Perl, Sixth
Edition. O'Reilly Media, Inc., Sebastopol, CA. 2011. 390 p.

[14] URL: https://www.tutorialspoint.com/perl/index.htm(access
date: 12.04.2018)

Mertononorus co3ganus SDF oTuera upoBbIX JUHUN 3aJ€PHKKU
0e3 cUMyJIsIIui

B.II. MenuksH, 3.M. ABetucsan, A.A. Oscenss, A.X. Mxurapss, A.K. Alipanerss, A.A. Ilerpocss,
A.D.MxpTusiH

3A0 Cunoncuc Apmenus, r. Epean. Vazgen.Melikyan@synopsys.com,
Zaven.Avetisyan@sysnopsys.com, Aristakes.Hovsepyan@sysnopsys.com

Annomayusa — B nanHol padoTe npeacTaB/JeHA METON0JIOTUsI
co3ganusa ordera uuppoBbix JuHUK 3agepxku (IJI3).
Yka3aHHbIl MOAX0J OCHOBAaH Ha co3gaHum oT4deToB L[JI3 ¢
HCII0JIL30BAHUEM CKPUIITOBOro s3bika Perl 6e3 Spice u SDF
cumyasnuii. Heo0xoaumocTs B moaXode [JaHHOTO THIA
3aKja04aercs B TOM, 4TO co3faHme otdetoB IIJI3 ¢
HCNOTb30BAHMEM MOJEJHPOBAHUS HAa CXEMHOM YPOBHe
(Spice) npuBoOaUT K GOJBIINM BpeMEHHBIM 3aTPaTaM Mo TOW
NpPUYMHE, YTO NAPALIEIBHO POCTY KOJUYECTBA 3J1eMEHTOB B
ynpasjisomeM 01oke uX ¢ailiibl ONMCAHUA CXEMBbI TaKkKe
pacumpsiioresi. IIpeacraBieHHasi MeTOROJIOTHSI TaKkKe
ob0eceunBaeT 3HAYMTEIbHYI0 3JKOHOMHIO BpeMeHH IO
cpaBHeHHI0 ¢ SDF cumyasiuusiMu, Tak Kak s 00JbIIHX
npoexToB SDF ¢aiinbl MoryT umers 0osiblIMe pa3Mepsl, OT
Yyero BO3HHKAeT He00XOAMMOCTL B OO/JBIIMX MAIIHHHBIX
pecypcax u BpeMeHHU s pa3oopa u anHotauuu takux SDF
(paiinos. MerogoJiorusi, npeacTaBjicHHasi B JaHHOH padore,
ucnojbzyer SDF ¢aiinst IUI3 pas co3panust oruera,
npenedperasi pazoopom u annoranueii SDF ¢aiisios. Otuer,
CO3/IaHHBIN MO MpeACTABJEHHOH MeTO010J0ruHU, BKIOYAET B
cedst uHopManuo o0 paziu4yHbIXx napamerpax IUJI3, B
0CO0EHHOCTH 3aBHCHMMOCTH 3ajep:kku u mara LJI3 ot
BXO/JHOT0 ¢ poBOro Koaa ynpapjeHHus.

Knruesvie cnoea — CAII; SDF Pa3oop; SDF Annoranus;
13

JINTEPATYPA

[1] URL:http://www.latticesemi.com/view_document?docume
nt_id=3467 (access date: 12.04.2018)
[2] Chung CC., Chen PL., Lee CY. An All-Digital Delay-
Locked Loop for DDR SDRAM Controller Applications //
IEEE International Symposium on VLS| Design,
Automation and Test. 2006. P. 1-4.
Garside J.D., Furber S.B., Temple S., Clark D.M., Plana L.A.
An Asynchronous Fully Digital Delay Locked Loop for
DDR SDRAM Data Recovery // IEEE 18th International
Symposium on Asynchronous Circuits and Systems. 2012.
P. 49-56.

3]

68

[4] URL:https://www.micron.com/~/media/documents/products
[technical-note/dram/tn4605.pdf (access date: 12.04.2018)

[5] Giordano R., Ameli F., Bifulco P., Bocci V., Cadeddu S.,

Izzo V., Lai A., Mastroianni S., Aloisio A. High-Resolution

Synthesizable Digitally-Controlled Delay Lines // IEEE

Journal of Solid-State Circuits. 2015. V. 62. Ne 6. P. 3163—

3171.

Abdulrazzaq B.1., Halin I.A., Sidek R.M., Shafie S., Yunus

N. A., Kawahito S. Sub-Picosecond Jitter Resolution Wide

Range Digital Delay Line for SoC Integration // IEEE

International Circuits and Systems Symposium (ICSyS).

2015. P. 44-48.

Raha P., Randall S., Jennings R., Helmick B., Amerasekera

A., Haroun B. A Robust Digital Delay Line Architecture in

a 0.13um CMOS Technology Node for Reduced Design and

Process Sensitivities // Proceedings of the International

Symposium on Quality Electronic Design (ISQED). 2002. P.

148-154.

Sourikopoulos I., Frappe A., Cathelin A., Clavier L., Kaiser

A. A Digital Delay Line with Coarse/Fine tuning

throughGate/Body biasing in 28nm FDSOI // IEEE 42nd

European Solid-State Circuits Conference (ESSCIRC).

2016. P. 145-148.

[9] URL: https://www.jedec.org/ (access date: 12.04.2018)

[10] The Institute of Electrical and Electronics Engineers, Inc.
IEEE Standard for Standard Delay Format (SDF) for the
Electronic Design Process. 2001.

[11] Shanbhag P., Gopalakrishnan C., Ghosh S. A Case Study in
Developing an Efficient Multi-threaded EDA Parser:
Synopsys SDF Parser // IEEE Computer Society Annual
Symposium on VLSI. 2012. P. 297-301.

[12] Ahmad T.B., Ciesielski M.J. Fast STA Prediction-based
Gate-level Timing Simulation // Proceedings of the IEEE
conference on Design, Automation & Test in Europe
(DATE). 2014. P. 1486-1492.

[13] Schwartz R.L., Foy B.D., Phoenix T. Learning Perl, Sixth
Edition. O'Reilly Media, Inc., Sebastopol, CA. 2011. 390 p.

[14] URL: https://www.tutorialspoint.com/perl/index.htm(access
date: 12.04.2018).

(6]

[7]

(8]

	I. Introduction
	II. Digital Delay Line Architecture
	III. Common reporting approach using SDF
	A. Standard Delay Format
	B. Problems
	C. Algorithms

	IV. Proposed approach
	A. Description of the basic algorithm
	B. Benefits of the proposed method

	V. Results and Conclusions
	References
	Литература

