
MES-2020. Russia. Moscow, October 2020. © IPPM RAS

8

DOI: 10.31114/2078-7707-2020-1-8-14

Application of visual tools for system modeling of digital

integrated circuits

S.E. Khalzev, A.I. Vlasov, V.A. Shakhnov

Bauman Moscow State Technical University shakhnov@iu4.bmstu.ru

Abstract — This paper is devoted to the analysis of use of the

xtUML diagram language for system level design of digital

ICs. Design levels of digital ICs (system, RTL, physical) are

briefly considered. The features of the xtUML diagram

language for system level design are analyzed. The

methodology of using the xtUML diagram language for

system design of digital ICs with subsequent modeling and

translation into a lower design level is proposed.

Keywords — system design, IC, VLSI, xtUML, diagram

language, design flow.

I. INTRODUCTION

A trend towards miniaturization has emerged in the
electronics industry. The culmination of miniaturization
today is the system-on-chip – an integrated circuit (IC)
containing very large functional units of the device. Such
ICs are the basis for building mobile phones, computers,
etc. Often systems-on-a-chip are so complex that for the
successful implementation of such an IC project, it is
necessary to organize its hierarchical decomposition – to
single out simple components.

At the initial stage of designing digital IC, a system
model is developed that includes a behavioral description
and the environment of the developed system, which
allows reflecting the interaction of IC with other elements
of equipment or measurement objects. This approach is
effective in the development of modern single-chip
systems of high complexity. And if we draw analogies
with concepts from a Russian Unified System of
Engineering Drawings (ESKD), then as a result of system
design, the engineer should get some kind of structural
diagram of the product being developed. However, with a
further transition from the system level to the level lower
in the hierarchical decomposition, the problem arises of the
complexity of the automated interpretation and
formalization of the "rectangles" of the structural diagram
in such a way that would be perceived by electronic CAD
systems of the next, low-level design stages. This type in
modern design routes for the digital element base can be a
behavioral description of the system in the C, MATLAB,
SystemC programming languages, etc. [1].

Attempts to solve the aforementioned problem led to
the introduction of a high-level software tool that was
previously used either with traditional computing systems
or was aimed at solving completely different problems, the
xtUML language, which is an executable extension of the

classical UML diagram language, into the traditional
design route.

II. ANALYSIS OF A TYPICAL ROUTE FOR DESIGNING A

DIGITAL IC

In the process of developing IC, various levels of
abstraction are identified as part of the design flow. So,
Fig. 1 shows a typical digital IC design flow. It can be seen
from it that, depending on the level of representation, the
object of abstraction is the system, register, gate, geometry
of the library element on the crystal [2], [5]-[7].

Fig. 1. Typical digital IC design flow

The system level is a description of the system at the
level of the structural diagram in the diagram language.
The behavioral level of the project description consists of
the behavioral description of the system in terms of
functions, expressions, algorithms. The register transfer
level is a combination of arithmetic and logical nodes,
memory elements, etc. The gate (logical) level describes
the project at the level of logic gates and triggers. The
lowest is the geometric level. On it, logical elements are
represented at the layout level in the form of geometric
elements and interconnections.

From the analysis of the design route of the digital IC,
it can be seen that as the descent through the hierarchical
decomposition levels during the design process, the digital
IC developer has to deal with less abstract and more
specific and complex structures with each new stage. Thus,

9

the synthesis of new and debugging of current solutions is
easier and more profitable at the system level.

III. XTUML LANGUAGE ANALYSIS AND BASIC DIAGRAM

LANGUAGE ELEMENTS

To build system models, IC developers can use the
UML extension xtUML (eXecutable and Translatable
Unified Modeling Language).

The xtUML language has the following features:

1) it’s a diagram language that combines all the
previously known features of the UML language with the
new features of transient diagram modeling;

2) diagrams described in xtUML language are platform
independent, they can be launched, tested and debugged
without the need to generate any code;

3) xtUML diagrams can be easily translated into
SystemC, C or C++ code using the model compiler;

4) The BridgePoint design environment from Mentor
Graphics, which developed the xtUML diagram language,
is free and available for download at https://xtuml.org.

The xtUML diagram language can be used
simultaneously for software development and as a highly
abstract approach to the design of electronic equipment.
Since the language is platform independent, it opens up
wide opportunities for system engineers to reuse of
universal diagrams from previous projects in new systems
without changing the target hardware [3].

While the classic UML language includes the main
models – use case, activity, placement, deployment, and
logical, xtUML language contains only a domain model. A
domain is an entity that is an analog of a block in block
diagram of a system. The domain model incorporates the
following diagrams:

1) domain diagram – shows model domains and
dependencies between them,

2) class diagram – shows the model classes and their
relationships,

3) state diagram – shows class states, events and state
transitions.

The mindmap of the domain model diagrams is shown
in Fig. 2.

xtUML conceptual modeling is performed for each
domain in the system. To determine the domains, the
system engineer must collect information on the use case
for each domain. Dependencies between domains, the
analogues of which in the electrical block diagrams show
the signal propagation paths, are called bridges.

Thus, the domain diagram implements the highest level
of system abstraction. Creating a domain diagram can take
only a few hours, this diagram can be updated several
times during the development cycle of the system as the
interfaces of “communication” between domains are
refined.

Fig. 2. The mindmap of the domain model diagrams of
xtUML

A domain is both an abstract and a specific entity. For
example, the domain “Signal Generator” may not specify
the internal structure of the signal generator, but its input
and output characteristics, such as the frequency and
amplitude of the input and output signals, cannot be vague
and indefinite. An example of a domain diagram is shown
in Fig. 3.

Fig. 3. Domain diagram for an example of a frequency
synthesizer

Domains are filled with real and abstract entities. These
entities, both real and abstract, are called classes. Several
classes with links form a class diagram.

For classes, their attributes are assigned – a set of
properties that characterize the operation of a given class.
Each attribute shows the characteristic of the signal the
class is working with. By connecting the attributes of
different classes among themselves, an association occurs
between the classes themselves. Class methods are
functions that are available to the class when working with
a signal. Associations show the propagation of signals. The
multiplicity of relations shows how many instances of one
class can relate to instances of another class [4]. An
example of class diagram is shown in Fig. 4.

Many things have life cycles – a set of states that a
thing goes through during its work. Therefore, the life
cycle can be shown in the form of a state diagram.

There is always a circle on the state diagram that
indicates the initial state, as well as a circle with a circle
inside, indicating the final state. The states in the diagram
are indicated by a rectangle with rounded corners. The

10

states are connected by arrows indicating the transition
from one state to another and showing its direction [4]. An
example of a state diagram is shown in Fig. 5.

Each state in the state diagram has an associated
procedure that takes as input data elements associated with
the event that triggered the entry into the state. Each
procedure contains a set of actions, and each action can
perform some functional calculation, data access, signal
generation, etc. Actions are similar to code, with the
exception of a higher level of abstraction, which makes no
assumptions about the structure of the software or its
implementation. Some language constructs are presented in
Table 1.

An operation procedure of a frequency-phase detector
of frequency synthesizer is presented in Table 2.

Thus, it can be seen that with help of diagrams of the
xtUML language, one can completely describe the
structure and algorithm of the system.

Fig. 4. Class diagram for an example of a frequency
synthesizer

Fig. 5. State diagram for an example of a frequency
synthesizer

Table 1

Listing of xtUML language constructs

//Comment

if (<boolean expression>) //If boolean expression is true,

<statement> //statement is executed

elif (<boolean expression >) //If current boolean

expression is true and previous is false,

<statement> //statement is executed

else //If all boolean expressions are false,

<statement> //statement is executed

end if;

for each <entity instance> //assigning a statement
in <set of entities> //to a set of entities

<statement>

end for;

while <boolean expression> //While boolean expression

is true,

<statement> //statement is executed

end while;

break; //Interruption of a cycle

continue; //Resuming the cycle

Table 2

Operation procedure of a frequency-phase detector of

frequency synthesizer

if (state.generate == 1) //If the generation process is

running

if(f_sys<f_ref - 50) //If the frequency drops more

than 50 Hz

f_sys_up(); //increase the frequency

if(f_sys>f_ref + 50) //If the frequency has increased

by more than 50 Hz

f_sys_dn(); //drop the frequency

endif;

11

IV. METHODOLOGY FOR BUILDING SYSTEM MODELS

USING THE XTUML LANGUAGE

When building system models in the xtUML language,
there are three stages of design:

1) preparatory stage,

2) development stage,

3) stage of implementation of the model.

The preparatory stage consists of the following actions:

1) Clarification of the technical requirements for the
system and their synchronization with the use cases.

2) Partitioning the system into domains.

3) Identification of new and reusable domains.

4) Assessment of the key risks of the system design.

5) Assessment of the volume of work and its cost.

At the development stage, iterative design takes place,
which includes the following stages:

1) Updating the system domain diagram (if necessary).

2) Creating a class diagram of the system.

3) Creating a state diagram of the system.

4) Adding operations to classes.

5) Indication of operations and action states in classes
using procedures.

6) Indication of initial conditions and test methods using
procedures.

7) Bridging between domains.

8) Simulation of the resulting scenario.

Upon completion of the development stage, the
engineer receives an abstract model of his system.

The stage of model implementation includes only one
action, which consists in synthesizing the system code
using a compiler for a particular programming language.

As a result of applying the above methodology, an
engineer gets a well-functioning high-level model of the
developed system, suitable for further designing the digital
ICs at lower levels – obtaining a description of the system
in low-level languages. The ways of further using the
simulation results in the xtUML language are presented in
Fig. 6 [8], [9].

Fig. 6. Ways to use xtUML simulation results

The xtUML model generates two C/C++ codes. The
first of them is converted into machine code of the already

configured processor core logic. The second is converted
into a Verilog/VHDL description of programmable system
logic.

Summing up the analysis of the methodology for using
the xtUML language at the initial stages of the design flow
of the digital ICs, it can be noted that this methodology
fully utilizes the capabilities of the xtUML diagram
language, and when it is used, the probability of errors at
the system design stage is minimized.

V. EXAMPLE OF THE DEVELOPMENT OF A SYSTEM

MODEL USING THE XTUML LANGUAGE

As an example, we will develop xtUML diagrams for
dynamic random access memory (DRAM) IC. The
ultimate goal of creating a system model in the xtUML
diagram language is code synthesis that can be used at
lower levels of system design.

Begin work by analyzing the block diagram of the
system being developed. The block diagram of DRAM IC
is shown in Fig. 7.

Fig. 7. Block diagram of DRAM IC

In order to understand what functions of the system are
available to each of its users, we will draw up a use case
diagram. A use case diagram of DRAM IC is presented in
Fig. 8.

Fig. 8. Use case diagram of DRAM IC

12

It can be seen from the use case diagram that DRAM
IC has two use cases: a process when some external system
writes data to DRAM and a process when some system
reads data from DRAM.

In accordance with the block diagram of the system
depicted in Fig. 7, we will divide the system into domains:
each block in the block diagram must have its own domain.
The domain diagram of DRAM IC system model is shown
in Fig. 9.

Fig. 9. Domain diagram of DRAM IC system model

The domain diagram decomposes the system – splits
the original system into several elementary subsystems.

The creation of the domain diagram completes the first
stage of the development of the system model – the
preparatory stage. The next is the development stage. Its
key steps are:

1) Creating a class diagram of the system.

2) Creating a state diagram of the system.

3) Adding operations to classes.

4) Indication of operations and action states in classes
using procedures.

5) Indication of initial conditions and test methods using
procedures.

6) Simulation of the resulting scenario.

The set of attributes and methods for the class diagram
is made up of the functionality that is required from the
developed DRAM IC. In this case, the class attributes are
the frequency of information signals, the width of the data
bus. Methods are functions such as "enter the row
address", "enter the column address", "enable data
writing", "enable data reading ". The class diagram of the
DRAM IC system model is presented in Fig. 10.

From the class diagram it becomes clear what signals
each class works with and what functions each of them
performs.

A set of states and transitions for a state diagram is
compiled based on the operating modes of the DRAM IC.
The operating modes of DRAM IC can be traced by the
time diagrams of writing and reading. Timing diagrams of
writing and reading data for DRAM IC are presented in
Fig. 11 and Fig. 12.

Fig. 10. Class diagram of the DRAM IC system model

Fig. 11. Timing diagram of writing data to DRAM IC

Fig. 12. Timing diagram of reading data from DRAM IC

DRAM states of dynamic memory are “Waiting for
commands”, “Set a row address”, “Set a column address”,
“Writing data to memory”, “Reading data from memory”.
The DRAM IC transitions are “IC enable”, “Arrival of the
Read_Enable signal”, “Arrival of the Write Enable signal”,
“Start of data reading”, “Start of data recording”, “End of
data reading”, “End of data recording”. The state diagram
of the DRAM IC system model is presented in Fig. 13.

13

Fig. 13. State diagram of the DRAM IC system model

The state diagram of the IC model provides the basis
for the synthesis of the finite state machine of the system.

Diagrams of domains, classes and states give complete
information about the system being developed. Further,
after describing the diagrams system engineer can simulate
and debug the system in Mentor Graphics BridgePoint, as
well as synthesize its structure in the hardware description
language. This step allows the system developer, who used
the technique described in section IV, to obtain a starting
point for the design of the system at a low level.

VI. CONCLUSION

Проектирование на системном уровне является
первым этапом в маршруте проектирования цифровых
СБИС. Для работы на этом уровне язык диаграмм
xtUML предоставляет возможности симуляции и
верификации проектов, а также даёт системному
инженеру базу для дальнейшего низкоуровневого
проектирования СБИС.

Design at the system level is the first step in the design
path of digital IC. To work at this level, the xtUML
diagram language provides simulation and verification
capabilities for projects, and also provides the system
engineer with the basis for further low-level IC design.

SUPPORT

Separate research results were obtained within the
framework of the state task of the Ministry of Education
and Science of the Russian Federation “Research on
methods and models for the synthesis of energy-efficient
inorganic memristor structures”.

REFERENCES

[1] Merkutov Lohov A. and Rabovolyuk A. 2007. Elektronika:
Nauka, Tekhnologiya, Biznes. 3 p. 102-109.

[2] V.B. Steshenko, A.V. Rutkevich, E. Gladkova and others.
Proektirovanie SBIS tipa «Sistema na kristalle». Marshrut
proektirovaniya. Sintez sxemy. Chast 1 (Designing of VLSI
type "System on a chip". The design route. The synthesis
scheme. Part 1) // Elektronnye komponenty. – 2009. - №1. –
p. 14 –21.

[3] Stephen J. Mellor, Marc J. Balcer, Executable UML: A
Foundation for Model-Driven Architecture // Addison-
Wesley Professional. 2001. 161 p.

[4] Booch G., Rumbaugh J., Jacobson I. The Unified Modeling
Language User Guide Second Edition. Addison Wesley
Professional, 2005. 496 p. (Russ. ed.: Buch G., Rambo D.,
YAkobson I. YAzyk UML. Rukovodstvo pol'zovatelya. 2-e
izd.: Per. s angl. Muhin N. – Moscow, DMK Press Publ.,
2006. 496 p.).

[5] Demin A.A., Vlasov A.I. Application of Hexagonal
Conceptual Model for Solving Problem of Synchronization
by Visual Designing of Complex Systems // Breakthrough
directions of Scientific Research in NRNU MEPhI:
Development Perspectives in the Framework of the
Strategic Сер."KnE-Engineering" 2018. С. 266-273.

[6] A. Rabovolyuk. Obzor marshruta proektirovaniya PLIS
FPGA Advantage kompanii Mentor Graphics (Mentor
Graphics FPGA Advantage FPGA design route overview) //
Komponenty i tekhnologii. 2005. №5. p. 98-101.

[7] A.I. Vlasov, A.A. Karpunin, IU.M. Ganev. Sistemnyi
podkhod k proektirovaniiu pri kaskadnoi i iterativnoi
modeli zhiznennogo tsikla (A systematic approach to design
with a cascading and iterative life cycle model) // Trudy
mezhdunarodnogo simpoziuma “Nadyozhnost i kachestvo”.
2015. T. 1. p. 96-100.

[8] A.I. Vlasov. Prostranstvennaia model otsenki evoliutsii
metodov vizualnogo proektirovaniya slozhnykh sistem
(Spatial model for assessing the evolution of visual design
methods for complex systems) // Datchiki I sistemy. 2013.
№9 (172). p. 10-28.

[9] A.I. Vlasov. Konceptsyya vizualnogo analiza slozhnykh
sistem v usloviyakh sinkhronnykh tekhnologii
proektirovaniya (The concept of visual analysis of complex
systems in the conditions of synchronous design
technologies) // Datchiki I sistemy. 2016. № 8-9(206). p.
19-25.

14

Применение визуальных средств для системного

моделирования цифровых интегральных схем

С.Е. Хальзев, А.И. Власов, В.А. Шахнов

Московский Государственный Технический Университет им. Н. Э. Баумана,

shakhnov@iu4.bmstu.ru

Аннотация — Работа посвящена анализу применения

языка диаграмм xtUML на системном уровне

проектирования цифровой элементной базы. Кратко

рассмотрены уровни проектирования цифровой

элементной базы (системный, регистровых передач,

физический). Проанализированы особенности языка

xtUML для системного уровня проекта. Предложена

методика применения языка xtUML для системного

проектирования цифровых интегральных схем с

последующим моделированием и трансляцией в более

низкий уровень представления проекта.

Ключевые слова — системное проектирование, СБИС,

xtUML, язык диаграмм, маршрут проектирования.

ЛИТЕРАТУРА

[1] Lohov A. and Rabovolyuk A. 2007. Elektronika: Nauka,
Tekhnologiya, Biznes. 3 p. 102-109

[2] В.Б. Стешенко, А.В. Руткевич, Е. Гладкова и др.
Проектирование СБИС типа «Система на кристалле».
Маршрут проектирования. Синтез схемы. Часть 1 //
Электронные компоненты. – 2009. - №1. – С. 14 –21.

[3] Stephen J. Mellor, Marc J. Balcer, Executable UML: A
Foundation for Model-Driven Architecture // Addison-
Wesley Professional. 2001. 161 p.

[4] Буч Г., Рамбо Д., Якобсон И. Язык UML. Руководство
пользователя. 2-е изд.: Пер. с англ. Мухин Н. – М.:
ДМК Пресс. – 496 с.: ил. ISBN 5-94074-334-X

[5] Demin A.A., Vlasov A.I. Application of Hexagonal
Conceptual Model for Solving Problem of Synchronization
by Visual Designing of Complex Systems // Breakthrough
directions of Scientific Research in NRNU MEPhI:
Development Perspectives in the Framework of the
Strategic Сер."KnE-Engineering" 2018. С. 266-273.

[6] Рабоволюк А. Обзор маршрута проектирования ПЛИС
FPGA Advantage компании Mentor Graphics //
Компоненты и технологии. 2005. №5. С. 98-101.

[7] Власов А.И., Карпунин А.А., Ганев Ю.М. Системный
подход к проектированию при каскадной и итеративной
модели жизненного цикла // Труды международного
симпозиума «Надежность и качество». 2015. Т. 1. С.96-
100.

[8] Власов А.И. Пространственная модель оценки
эволюции методов визуального проектирования
сложных систем // Датчики и системы. 2013. №9 (172).
С. 10-28.

[9] Власов А.И. Концепция визуального анализа сложных
систем в условиях синхронных технологий
проектирования // Датчики и системы. 2016. № 8-9(206).
С. 19-25.

