Возможности метрологических систем атомно-силовой микроскопии для исследований, разработок и контроля параметров изделий микро- и наноэлектроники

В.А. Быков^{1,2}, Ан.В. Быков¹, Ю.А. Бобров¹, В.В. Котов¹, С.И. Леесмент¹, В.В. Поляков¹ ¹ООО «НТ-МДТ», г. Москва, vbykov@ntmdt-si.ru

²МФТИ

Аннотация — В статье изложены современные возможности сканирующих зондовых микроскопов для исследования свойств и метрологического контроля поверхностей и наноструктур, в том числе, изделий микро- и наноэлектроники.

Ключевые слова — сканирующий туннельный микроскоп, СТМ, сканирующий атомно-силовой микроскоп, АСМ, сканирующий зондовый микроскоп, СЗМ, комбинационное рассеяние, Рамановская спектроскопия, Рамановская микроскопия сверхвысокого разрешения, ближнепольная оптическая микроскопия, безапертурная сканирующая зондовая микроскопия ближнего поля, кантилевер, нанотехнология, метрология, нанометрология, наноэлектроника.

I. Введение

К настоящему времени сканирующая зондовая микроскопия (СЗМ) вошла в состав классических методов исследования наноструктур и широко используется для качественной оценки физико-химических, геометрических, электрических, механических, магнитных параметров поверхностей, биологических объектов, в том числе, живых клеток и их реакцию на состав и параметры окружающей среды.

Кроме морфологии высокого пространственного разрешения, сканирующие зондовые микроскопы позволяют измерять целый ряд физических свойств поверхностных структур:

- распределение сил трения между зондом и поверхностью в процессе сканирования;
- распределение поверхностного электрического потенциала (Кельвин-мода);
- распределение поверхностной проводимости;
- распределение электрической емкости системы зонд-поверхность C (x,y), а также dC/dz, dC/dV;
- распределение магнитных сил в системе зонд с заданной намагниченностью – поверхность;
- распределение пьезоэлектрических свойств;
- ▶ распределение теплопроводности;
- распределение механических свойств (модуля Юнга);
- распределение адгезионных свойств;
- распределение электрических свойств поверхностей, плотность поверхностных состояний;

строение и свойства приповерхностных двойных слоев на границе – изучаемый объект, адсорбированный на твердой подложке – проводящая жидкость.

Помимо этого C3M позволяет проводить локализованную модификацию поверхностей в многочисленных режимах нанолитографии.

Для исследования оптических свойств интенсивно развиваются т.н. комбинированные методы, позволяющие одновременно работать в режимах атомно силовой микроскопии и спектроскопии комбинационного рассеяния (Рамановской), люминесцентной спектроскопии, безапертурной ближнепольной микроскопии с возможностью визуализации распределения модулированного вибрирующим зондом рассеянного излучения в видимом, ИК и терагерцовом диапазонах длин волн с разрешением до 10 нм.

В результате интенсивного развития микроэлектроники в последние годы получила заметное развитие элементная база. Появились новые, мощные микропроцессоры, программируемые логические интегральные схемы. Внедрение современных компонентов в контроллеры СЗМ позволило заметно повысить их производительность, реализовать многие процедуры в режиме реального времени, начать применять элементы искусственного интеллекта на базе нейронных сетей. Данные модификации позволили существенно автоматизировать процесс получения СЗМ-данных, повысить их достоверность и производительность систем. В частности, в настоящее время в функциях приборов введена возможность быстрого, автоматического подбора параметров сканирования в методе амплитудной модуляции («Теппинг» моде). Это делает атомно-силовые микроскопы нашей компании доступными для технологов, материаловедов и, даже, школьников, дает возможность получать высококачественное изображение рельефа поверхности.

А. Сканирующий зондовый микроскоп «ВЕГА» с возможностью применения для исследования наноструктур микро- и наноэлектроники

На универсальных сканирующих зондовых микроскопах, используемых для исследовательских работ, размер образцов в плоскости, обычно, не превышает 40 мм, хотя опционально может достигать и 100 мм (https://www.ntmdt-si.ru/products/modular-afm/ntegra-ii). Ограничение связано с требованием возможности получения высокого разрешения, которое должно составлять доли ангстрема. В современной микроэлектронике размеры пластин могут составлять 300 мм и более. В России ни исследовательские институты, ни производства с такими пластинами пока не работают. Максимальный диаметр пластин и была произведена разработка прибора «Вега» [1] (рис. 1.).

Рис. 1. Сканирующий зондовый микроскоп ВЕГА, на столе пластина диаметром 200 мм (слева) и набор образцов

Конструкция прибора выполнена таким образом, чтобы наряду с возможностью работы практически во всех режимах атомно-силовой микроскопии, в системе была обеспечена возможность получения атомарного разрешения. Корпус прибора выполнен из звукопоглощающих не пылящих материалов, обеспечивающих возможность работы в чистых зонах. Измерительный комплекс оснащен системой пассивной акустической защиты и активной виброзащитой. В рабочей зоне прибора обеспечивается безвентиляторная термостабилизация с точностью 0.05^0 в интервале температур на 3 – 10 градусов выше температуры окружающей среды, что позволяет сводить термические дрейфы до рекордно низких уровней, обеспечивая возможность получения атомарного разрешения.

Система автоматического позиционирования зонд – образец позволяет проводить автоматические измерения как в заданных областях 200 мм пластины, так и работать с массивами образцов. При этом точность позиционирования на площади 200х200 мм² составляет 1 мкм.

Прецизионные датчики трубчатого пьезосканера и координатного стола обеспечивают высокую точность позиционирования в микро- и наномасштабах. Область сканирования пьезосканером 100х100 мкм². Сканер оснащен высокоточными емкостными датчиками, обеспечивающими уровень шума менее 300 пм в плоскости образца и менее 30 пм по нормали. Температурный дрейф по всем трем координатам не превышает 0,2 нм/мин. Система обеспечивает скорость позиционирования до 8 мм/сек по X,Y (в плоскости образца).

Прибор обеспечен базовым набором методик, включающим как контактные – измерения рельефа, распределения латеральных сил, регистрация токов растекания, измерение силовой микроскопии пьезоотклика, так и модуляционные методики – «Теппинг» моду с автоматической подстройкой параметров сканирования с отображением рельефа и фазы (режимы ScanTronicTM), распределения потенциала (Кельвин-мода), распределения магнитных сил (в случае использования специальных магнитных зондов), электростатического взаимодействия, распределения изменений электрической емкости между зондом и образцом.

Рис. 2. Сканирующий зондовый микроскоп ВЕГА, (а) – атомное разрешение решетки НОРG, 6×6 нм; (б) – «черный» Si, 40×40 мкм, (г) – фрагмент интегральной схемы, полученный в автоматическом режиме при помощи ScanTronicTM (65×65 мкм)

В АСМ ВЕГА наряду с традиционными, используются новые методы сканирующей атомно-силовой спектроскопии – методы семейства HybriD (HD) – в которых в процессе сканирования в каждой точке с высокой скоростью измеряется зависимость угла изгиба кантилевера от расстояния. Идея измерений такого типа была предложена еще в 90-е годы и называлась Jumping mode – прыгающая мода. Достоинства ее были понятны – интерпретация силовой кривой очень информативна,

но на практике ее в то время применять было бессмысленно – процесс измерения силовой кривой занимал слишком долгое время - возможности электроники не позволяли. Для возможности достоверной интерпретации каждая кривая должна содержать, как правило, не менее 500 точек, что делало процесс сканирования очень медленным - измерение одной строки занимало не меньше минуты, а, следовательно, на один скан из 300 строк нужно было затратить около 5 часов, что совершенно неприемлемо. Появившаяся новая элементная база позволила разработать контроллеры, обеспечивающие скорость сканирования до 2 строк в секунду и при этом снимать силовую кривую из 3000 отсчетов в точке. Реализация этой возможности и позволила нам реализовать режим сканирующей зондовой спектроскопии – HybriDTM mode (рис. 3) [2] – (Прыжковой АСМ), что позволило измерять:

- Рельеф поверхности в режимах притяжения и отталкивания.
- Модуль Юнга.
- Адгезию и работу адгезии.
- Проводимость.
- > Латеральный и вертикальный пьезоотклик.
- > Температуру и теплопроводность.
- Термоэлектрические свойства.
- Электростатические свойства: потенциал поверхности, работу выхода и т.д.

Применение такого режима сканирования особо полезно в тех случаях, когда с одной стороны неприменимы контактные методы из-за их слишком жесткого воздействия на образец, а сила взаимодействия и время контакта между зондом и образцом в случае применения амплитудно-модуляционной методики – слишком малы.

Рис. 3. HybriDTM mode – Прыжковая ACM

Рис. 4. Прыжковая АСМ пьезоотклика

Дальнейшее развитие HybriDTM mode позволило создать новые, информативно-емкие методы, позволяющие измерять пьезоэлектрические свойства материалов (рис. 4). В этом режиме в процессе измерения силовой кривой в нужный момент между зондом и образцом подается переменный электрический сигнал заданной амплитуды и частоты, что позволяет исследовать пьезоэлектрические материалы. Поскольку зонд ACM отводится от поверхности в каждой точке сканирования, сила латерального взаимодействия зонда и образца значительно уменьшается по сравнению с обычным контактным методом.

Это дает новые возможности для исследований пьезоотклика мягких, плохо закрепленных и хрупких объектов, таких как биологические образцы, наночастицы и т.д.

Также была реализована возможность двухпроходных резонансных магнитных и электростатических измерений с одновременной регистрацией рельефа, адгезии, модуля упругости и исследованиями пьезоотклика.

Рис. 5. Исследование сплава олово-висмут прыжковой ACM. Размер скана 10х10 мкм. Слева – топография, справа – поверхностный потенциал и модуль Юнга

В. Сканирующая многофункциональная спектроскопия комбинационного рассеяния (Рамановская) в комбинации с АСМ.

Интеграция C3M с методами оптической спектроскопии представляет исключительный интерес. Для реализации этой идеи с конца 90-х годов нашей группой были предприняты разработки соответствующих систем – были созданы приборы линии С3M СПЕКТРА, включающие как атомно-силовую, так и сканирующую Рамановскую и люминесцентную спектроскопию. Разработка зондов со специальными покрытиями, способными концентрировать оптические плазмоны, позволила создать приборы, позволяющие регистрировать эффект гигантского усиления Рамановского рассеяния – реализовать методы Tip Enhanced Raman Scatterings (TERS) [3-5].

Рис. 6. Схема и фотография системы ИНТЕГРА-СПЕКТРА II

На рис. 6 изображена общая схема и фотография системы ИНТЕГРА-СПЕКТРА II разработки 2015-2020 года. Новая оптическая схема состоит из трех независимых каналов возбуждения образца: сверху, сбоку и снизу. Каждый канал реализован в виде независимого модуля.

Важнейшим элементом системы является сам зонд C3M. На рис. 7 показан зонд C3M СПЕКТРА РАМАН. Для изготовления зондов используется кремний, с ориентацией плоскости зонда такой, что нормаль к ориентации зонда составляет 20⁰ (рис.7). Это позволяет получать оптический доступ к объекту исследования при заводе излучения сверху.

Зонд покрыт тонкой пленкой Ag-Au и является концентратором оптических плазмонов, обеспечивая эффект TERS.

Открытый дизайн обеспечивает возможности модификации системы. Каждый конкретный канал позволяет наблюдать образец с помощью объектива с увеличением до 200х, возбуждать образец лазерным лучом, сканировать сфокусированным лазерным пятном по поверхности образца.

Рис. 7. Зонд СЗМ РАМАН

Диапазон длины волны возбуждения - от 325 нм до 1064 нм*.

Автоматизированная юстировка оптической системы ACM сводит к минимуму действия пользователя по её настройке.

Спектрометр может быть снабжен различными детекторами – ФЭУ, ЛФД, ПЗС. Карты Рэлеевского и Рамановского рассеяния могут быть получены одновременно.

Рис. 8. TERS графена на кремнии со слоем окисла

Методика позволяет получать информативные результаты, в том числе, свойств предельно тонких углеродных материалов – графенов, углеродных нанотрубок, слоистых полупроводников, а также квантовых точек, нанопроволок и других материалов, активных в комбинационном рассеянии.

С. Сканирующая ближнепольная микро- скопия

Ближнепольная оптическая микроскопия (СБОМ) развивалась с середины 70-х годов как апертурная микроскопия. Пространственное разрешение СБОМ, как правило, не превышало 100 нм. Наиболее интересное для практических применений направление начало развиваться с рождением идеи безпапертурной сканирующей ближнепольной оптической микроскопии (БА СБОМ) [6-8]. В БА СБОМ регистрируется модулированное вибрирующим, как правило на первой резонансной частоте кантилевером, рассеянное лазерное излучение. Разрешение при этом определяется радиусом кривизны зонда, а интенсивность рассеянного излучения зависит от поляризуемости поверхностных структур, диэлектрической проницаемости, неупругого взаимодействия зонда с поверхностными структурами образца.

Рис. 9. Принципиальная схема и фотография прибора ИНТЕГРА-ИК

На рис. 9 приведена принципиальная схема и фотография прибора ИНТЕГРА-ИК. Система может работать в спектральном диапазоне 3 – 12 мкм в зависимости от используемого лазера. Наиболее интересны перестраиваемые каскадные лазеры, но для исследований полупроводниковых структур можно использовать и гораздо более дешевый СО₂ лазер, имеющий небольшой диапазон перестройки (9,4 – 10,6 мкм). На рис. 10 приведены результаты исследования скола транзистора.

Слева – результат электронно-микроскопического снимка, а справа (б) безаппертурная ближнепольная ИК – микроскопия. На электронно-микроскопическом снимке легированная область не видна, а на ИК СБОМ – она видна прекрасно.

Рис. 10. Электронная микроскопия (слева) и ИК СНОМ (справа)

Но наиболее интересна ИК СБОМ в случае использования перестраиваемых лазеров. При этом можно получать результаты по распределению на поверхности химических функциональных групп.

Представляется исключительно интересным использование принципов безапертурной ИК микроскопии с использованием перестраиваемых источников терагерцового излучения таких, как лазеры на свободных электронах. В этом случае появляется возможность «чтения» кодонов ДНК, идентификация белков и других крупных молекулярных объектов с разрешением вплоть до отдельных кодонов.

D. Сканирующая ион-проводящая микроскопия

В сканирующей ион-проводящей микроскопии (СИПМ) в качестве зонда СЗМ может выступать тонкий, с диаметром внутреннего отверстия порядка 10 нм, капилляр. При этом измеряется ток между электродом в капилляре и электродом в проводящем, как правило в водном, растворе. При приближении зонда к поверхности ток начинает изменяться (падать). Поддерживая это изменение на задонном уровне, производится сканирование. Это так называемая, капиллярная микроскопия. Метод был предложен в конце 80-х годов прошлого века Паулем Хансма в 1989 году, но по-настоящему развит был профессором Юрием Корчевым (факультет медицины, Империал колледжа в Лондоне) [9-10].

В настоящее время фокус приложений этого метода – клеточная биология и медицина, но в то же время он может быть весьма интересным для исследования процессов травления, зарядки-разрядки структурных элементов аккумуляторных батарей, структуры двойных слоев в приповерхностных областях, для развития технологий микро- и наноэлектроники.

II. Выводы

Можно уверенно констатировать, что к настоящему времени в России выполнены разработки и организовано производство практически полного, за исключением сверхвысоковакуумных СЗМ, комплекса приборов и методов для исследования микро- и наноструктур с использованием сканирующих зондовых микроскопов. Для лабораторий – созданы приборы линии ИНТЕ-ГРА, для системы образования в школах и коледжах бюджетные, но достаточно мощные НАНОЭДЬЮКА-ТОРы и СОЛВЕР-НАНО, а для исследовательских работ – приборы кратко описанные в настоящей статье. Следует отметить, что развитие наноэлектроники, создание новой элементной базы дают возможность дальнейшего совершенствоваания приборов, внедрения элементов систем искусственного интеллекта в программное обеспечение с раскрытием возможностей развивающейся элементной базы контроллеров, срок морального старения которых сегодня составляет порядка 5 лет.

Благодарности

Производитель оборудования компания ООО «НТ-МДТ» является участником проекта «Сколково» [11].

Проект по сканирующей ион-проводящей микроскопии реализуется в сотрудничестве с компанией ICAPPIC [12] при поддержке Фонда содействия инновациям [13].

ЛИТЕРАТУРА

- [1] https://www.ntmdt-si.ru/products/automated-afm/vega
- [2] https://www.ntmdt-si.ru/products/features/hybrid-mode
- [3] Stöckle, Raoul M.; Suh, Yung Doug; Deckert, Volker; Zenobi, Renato (February 2000). Nanoscale chemical analysis by tip-enhanced Raman spectroscopy // Chemical Physics Letters. 318 (1–3): 131-136.
- [4] Thomas Schmid, Christian Camus, Sebastian Lehmann, Daniel Abou-Ras, Christian-Herbert Fischer, Martha Christina Lux-Steiner, and Renato Zenobi. Spatially resolved characterization of chemical species and crystal structures in CuInS₂ and CuGa_xSe_y thin films using Raman microscopy // Phys. Status Solidi, No. 5, 2009.
- [5] Johannes Stadler, Thomas Schmid, and Renato Zenobi. Chemical Imaging on the Nanoscale – Top-Illumination Tip-Enhanced Raman Spectroscopy // CHIMIA 2011, 65, No. 4 235.

- [6] F. Zehnhausern, Y.Martin, K.Wickramasinghe. Scanning interferometric apertureless microscopy – optical imaging with 10 Angstrom resolution // Science 269, pp.1083-1085, (1995).
- [7] B.Knoll, F.Keilmann, A.Kramer, R.Guckenberger. Contrast of microwave near field microscopy // Appl. Phys. Lett, 70, pp. 2667-269 (1997).
- [8] Kazantsev D.V., Kuznetsov E.V., Timofeev S.V., Shelaev A.V., Kazantseva E.A. Apertureless near-field optical microscopy // Physics-Uspekhi. 2017. T. 60. № 3. C. 259-275.
- [9] Milovanovic M, Korchev YE, Lab MJ, Bashford CLet al., 1997, Scanning probe microscopy of soft samples: Comparison of AFM with SICM, BIOPHYSICAL JOURNAL, Vol: 72, Pages: TU430-TU430, ISSN: 0006-3495.
- [10] https://www.imperial.ac.uk/people/y.korchev/publications
- [11] https://sk.ru/
- [12] http://icappic.com/
- [13] http://fasie.ru/

Capabilities of Metrological Systems of Atomic Force Microscopy for Research, Development and Control of Micro- and Nanoelectronic Products Parameters

V.A. Bykov^{1,2}, An.V. Bykov¹, Y.A. Bobrov¹, V.V. Kotov¹, S.V. Leesment¹, V.V. Polyakov¹

¹NT-MDT Spectrum Instruments companies group, Moscow, vbykov@ntmdt-si.ru

²MIPT, Moscow, www.mipt.ru

Abstract — The article describes the modern capabilities of scanning probe microscopes for studying the properties and metrological control of surfaces and nanostructures, including micro- and nanoelectronic products.

Keywords — scanning tunneling microscope, STM, scanning atomic force microscope, AFM, scanning probe microscope, SPM, Raman scattering, Raman spectroscopy, ultra-high resolution Raman microscopy, near-field optical microscopy, apertureless scanning probe microscopy of the near field, cantilever, cartridge, nanotechnology, metrology, metrology nanometrology, nanoelectronics.

References

- [1] https://www.ntmdt-si.ru/products/automated-afm/vega
- [2] https://www.ntmdt-si.ru/products/features/hybrid-mode
- [3] Stöckle, Raoul M.; Suh, Yung Doug; Deckert, Volker; Zenobi, Renato (February 2000). Nanoscale chemical analysis by tip-enhanced Raman spectroscopy // Chemical Physics Letters. 318 (1–3): 131-136.
- [4] Thomas Schmid, Christian Camus, Sebastian Lehmann, Daniel Abou-Ras, Christian-Herbert Fischer, Martha Christina Lux-Steiner, and Renato Zenobi. Spatially resolved characterization of chemical species and crystal structures in

 $CuInS_2$ and $CuGa_xSe_y$ thin films using Raman microscopy $\prime\prime$ Phys. Status Solidi, No. 5, 2009.

- [5] Johannes Stadler, Thomas Schmid, and Renato Zenobi. Chemical Imaging on the Nanoscale – Top-Illumination Tip-Enhanced Raman Spectroscopy // CHIMIA 2011, 65, No. 4 235.
- [6] F.Zehnhausern, Y.Martin, K.Wickramasinghe. Scanning interferometric apertureless microscopy – optical imaging with 10 Angstrom resolution // Science 269, pp.1083-1085, (1995).
- [7] B.Knoll, F.Keilmann, A.Kramer, R.Guckenberger. Contrast of microwave near field microscopy // Appl. Phys. Lett, 70, pp. 2667-269 (1997).
- [8] Kazantsev D.V., Kuznetsov E.V., Timofeev S.V., Shelaev A.V., Kazantseva E.A. Apertureless near-field optical microscopy // Physics-Uspekhi. 2017. Vol. 60. No. 3. P. 259-275.
- [9] Milovanovic M, Korchev YE, Lab MJ, Bashford CLet al., 1997, Scanning probe microscopy of soft samples: Comparison of AFM with SICM, BIOPHYSICAL JOURNAL, Vol: 72, Pages: TU430-TU430, ISSN: 0006-3495.
- [10] https://www.imperial.ac.uk/people/y.korchev/publications
- [11] https://sk.ru/
- [12] http://icappic.com/
- [13] http://fasie.ru/