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Abstract — There are some critical problems of SoC Design 

Verification (DV) related to growing functional complexity 

including 

- Time to Market: full enough verification takes too much 

time; 

- Verification Quality: costly chips re-spins take place; 

bugs are escaping detection by traditional verification 

method. 

The paper describes: 

1) How Formal Verification could help to resolve Time to 

Market problem by doing “left shift” of design – 

verification timeline involving designers to use Formal 

tool to initially clean up design  

2) How Formal Verification helps to improve verification 

quality and avoid re-spins by detection of simulation – 

resistant bugs [1] 

3) Example of Lookup Table Block, corner case bugs close 

to simulation – resistant bug concept detected by Formal 

Verification which will be difficult to catch by simulation; 

Formal Verification strategy for the block and used 

Formal techniques 

Keywords — SoC, Design Verification, Formal Verification,  

SystemVerilog, SVA. 

I. INTRODUCTION 

While simulation keeps being the main method of 
functional Design Verification of chips[2], it is not able to 
adequately address challenges related to growing 
complexity of the chips. Two major challenges are time to 
market and quality of verification – ability to avoid or 
reduce number of chip re-spins. The challenges require to 
use other methods, first of all, emulation and Formal 
verification. 

Traditionally application of Formal methods was started 
from checking equivalence between RTL and gate-level 
netlist. Then Formal methods started to be used to prove 
particular properties represented as assertions (Formal 
Property Verification [3,4,5]).  

Now bunch of Formal tool applications are available. 
They simplify Formal usage for particular functional 
aspects, for example, Connectivity Checks, Formal 
Coverage Analysis for detection of uncoverable code.  

In addition to verification of particular aspects, Formal 
Verification could be used for overall sign-off of design 
blocks. Formal tools provide support for Formal coverage 
analysis to ensure Formal verification quality [].  

Paper will look how Formal Verification could help to 
address verification challenges and why it is difficult to do 
with just simulation. Example will be used based on the 
author experience.  

II. FORMAL VERIFICATION TO REDUCE TIME TO 

MARKET 

A. Comparison with simulation 

Rough typical sequence of design and verification steps 
for target block includes: 

- Block design by design engineer; 

- Development of verification environment by 
verification engineer: 

- Development and running tests and regressions; at that 
time first bug and majority of bugs are found 

- Running more random regressions, collecting coverage 
and developing more tests  

In that flow block needs to be designed, passed to 
verification engineer, simulation environment developed 
before first bug is found. 

B. How Formal could help 

Formal verification helps to reduce total development 
and verification time by 

- doing “left shift”: find first bug earlier and complete 
earlier; 

- reducing time in the last phase: no need to run random 
regression more and more; Formal coverage analysis is 
still required though. 

The following could be done to do “left shift”: 

- Use Formal method by designers at early stage for 
initial cleaning of the block from bugs 

- Use of Formal Applications which do not require 
setting environments, e.g. Automatically generated 
checks / Super lint, X-Propagation checks. 

Designer could start from generation and analysis of 
waveforms with use of Formal tool. It could be done by 
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defining cover properties and proving them. Formal tool 
will generate waveform how to reach coverage point. 

Formal tools have now special features to assist initial 
bring up, for example, Formal Navigator which is part of 
VC Formal.  In simple case user could just select signal, 
value and Formal tool will use it as cover property and will 
generate waveform for that. It also assists in creation of 
more complex cover properties. 

After exercising design with cover properties designer 
could put assertions and try to prove them. It makes sense to 
start from simple assertions for particular cases. 

Designer could also apply Formal Apps mentioned 
above. We had the case when designer found arithmetic 
overflow case which potentially could be an issue. 

C. What needs to be done in advance in company / 

project scope 

Note that unreal scenarios could be generated for cover 
properties and false failures could be detected for assertions. 
In that case constraints needs to be added, in particular 
constraints for input interfaces. For industry standard 
protocols it makes sense to use assertion IP and for standard 
protocols at company / project scope it makes sense to 
develop such assertion IP[6]. For input interfaces assertions 
will be used as constraints (assumptions). 

Another group of assertions which could come “for 
free” for designer are assertions from design reuse modules, 
for example, FIFOs, credit control modules. At the company 
/ project scope it makes sense to fill up such reuse modules 
with SVAs for error conditions. Even simple assertions for 
FIFO / credit overflow could help to detect issues with usage 
of that components at upper scope. 

III. FORMAL VERIFICATION TO AVOID SIMULATION 

RESISTANT BUGS 

Despite help of Formal tools to reduce time to market is 
important Formal benefit, the main advantage and goal of 
Formal method from the beginning is exhaustive proof of 
design properties. 

Especially it is important for designs which could 
potentially contains so called “simulation - resistant bugs”, 
which could be very difficult to find via simulation.  

A. Why simulation-resistant bugs could escape 

Simulation – resistant bugs could escape because of 

- High parallelism of the design, several processing 
threads crossing inside design; 

- Big number of configuration inputs / registers required 
verification for various combinations; each 
combination might require separate simulation run 

- Big number of input combinations, for example, for 
packet alignments, sizes, etc. 

Two last factors could be mitigated and addressed by 
running random regressions for a long time. The first one is 
most critical. The reasons why bugs could escape from 
simulation for blocks with high parallelism include: 

- It is difficult to cover all critical timing between events; 

- Sequence of critical events could contain several 
consecutive events; 

- Critical events could be deep inside design, not obvious 
and not controllable by simulation; 

B. Blocks with potential simulation – resistant bugs 

Signatures of such blocks include 

- Several input interfaces affecting same internal state / 
output; 

- Dynamic structures supporting add, delete, update 
operations 

- Bypass logic, cache, arbitration logic 

OSKI Technology is collecting list of such blocks in 
different areas [1] which includes for example: 

- For CPU & GPU: Instruction Fetch Queue, Load Store 
unit, L2 Cache, Coherency manager, Resource 
Manager; 

- For Networking, Ethernet, Wireless: Forwarding 
Engines, Linked-list controllers, Quality of Service 
units, Buffer managers, Block aligner, Packet 
Encoder/Decoder, Bypass cache and forwarding logic. 

There are some examples of simulation-resistant bugs in 
the next section. 

Formal method should catch simulation resistant bugs 
by proving assertions for ANY sequences satisfied 
constraints. For that certainly set of checks should be 
sufficient which could be confirmed by Formal coverage 
analysis.  

IV. EXAMPLE 

A. Design  

Here is example of Lookup Block with conceptual 
diagram below. 

 

Figure 1. Diagram of Lookup Table Block  
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Block takes command which could be 

- Lookup data for certain key; 

- Scan lookup table: read and optionally remove entry 

Block sends downstream lookup result and takes update 
for the lookup table. 

Inside block has: 

- Hash Index Calculator to select memory index for 
lookup key; 

- Memory Manager controlling access to lookup table in 
external memory and communication with other 
blocks; 

- Cache based bypass logic to accommodate memory 
latency as long as lookup commands could go back-to-
back and update from previous one should contain 
lookup result for the next; 

- Overflow CAM which contains lookup entries which 
cannot be placed in the memory, it contains internal 
bypass logic. 

The Lookup Table block was selected for Formal 
Verification because it has several activities working in 
parallel: lookup, scan, update, it contains cache / bypass 
logic and dynamic data.  

The most critical sub-module where actually simulation 
– resistant bugs were found is Overflow CAM block. Here 
we have dynamic location for key inside CAM: key could 
be added, removed, updated which is creating extra 
complexity and potential for simulation – resistant bugs. 

B. Simulation resistant bugs  

Here are few examples of corner case bugs which are 
illustrating concept and close to simulation – resistant bugs. 
Paper describes sequence of events required for bug 
detection. Bugs description and correspondent sequences 
are simplified to pass the concept. Actual sequences are 
more difficult to envision during test planning. 

 

Figure 2. Waveform for 1st bug detection 

There is the following sequence of 2 events when 1st bug 
detected: 

- Scan command with certain key1 presented at key 
signal; note that key is don’t care signal for scan 

command (scan command is accompanied with 
memory / CAM index) but as long as simulation done 
at upper level it is not primary input and is not driven to 
‘X’ during simulation 

- Lookup command with the same key1 as for scan 
command  

Bypass logic has key_match signal to check condition 
when lookup done for the same key as in previous cycle 

wire key_match = wr_valid && fn_key_compare  

   (key, ket_d, …); 

However due to bug it missed command check. Should 
be  

wire key_match = wr_valid && cmd_lookup_d && 

   fn_key_compare (key, ket_d, …); 

This bug could be detected if we drive ‘X’ at key port 
when doing simulation at the scope of the CAM overflow 
module. Depending on the coding of fn_key_compare it 
might require activation of X-Prop simulation mode. 

However as long as simulation done at upper level 
without control of the key signal it is very difficult to hit case 
when “occasionally” same key set for two commands 
especially as long as at upper level scan and lookup are in 
independent threads and timing between scan and lookup 
commands is not controllable. Note that simulation 
coverage will not detect missing the issue in that case. 
Formal method easily detected the bug.  

Another example is related to dynamic modification: 
installation new key and invalidation of entry. 

 

Figure 3. Waveform for 2nd bug detection 
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difficult to hit such case.  

Another example is similar when we have no space 
available in the CAM but some entry just invalidated in 
previous cycle and available for installation of new key. 

There is also case when bug detection requires sequence 
of 3 events in the row which is very difficult to hit or even 
to predict when putting cover properties for internal points. 

Sequence here contains  

- 2 scan commands: one causes update of the entry and 
the other does not  

- lookup command which hits the entry 

Due to the bug bypass logic take info from the wrong 
scan command. 

C. Formal Verification Strategy for Lookup Table Block 

Due to complexity it is difficult to achieve Formal prove 
at the block scope for all properties. Instead considered the 
following environments: 

- Cache bypass logic; it is simple and rather standard 
environment; it was encoded very fast and found bug 
(not simulation resistant though); 

- Overflow CAM; all corner-case simulation resistant 
bugs found here; 

- Top-level environment which checks memory 
management using memory abstraction model and 
checks integration of other parts 

Verification strategies for the environments are 
presented below illustrated with code examples for 
verification techniques good to know: 

- Cache verification using symbolic memory index; 

- Floating pulse method to simplify checks and improve 
performance by tracking only one transaction 

- Memory abstraction 

D. Formal Verification Cache – Bypass Environment  

Basic strategy to verify cache – bypass logic:  

- keep track of ANY but only one memory location; 

- keep sign of presence data for that location in the cache 
and last written data 

- compare read data with last written data if data is in the 
cache. 

Here is some illustration code: 

// symbolic variable which takes ANY value but 

stable 

// during formal prove 

wire [INDEX_SZ-1:0] sym_mem_idx; 

sym_mem_idx_stable: assert property ( 

  ##1 sym_mem_idx == $past(sym_mem_idx) 

); 

 

// check if selected index detected & keep status 

of  

// presence in the cache 

wire wr_mem_idx_matches_sym = wr_mem_row_vld &&  

  (wr_mem_idx == sym_mem_idx); 

reg [CACHE_SZ-1:0] wr_mem_idx_sym_shift; 

always @(posedge clk) 

  wr_mem_idx_sym_shift <=  

    {wr_mem_idx_sym_shift[CACHE_SZ-2:0],       

     wr_mem_idx_matches_sym}; 

wire 

wr_mem_idx_sym_in_cache=|wr_mem_idx_sym_shift; 

 

// keep last data written for symbolic index 

reg [DATA_SZ-1:0] wr_mem_data_last_sym; 

always @(posedge clk) 

  if (wr_mem_idx_matches_sym) 

    wr_mem_data_last_sym <= wr_mem_data; 

 

// check data from cache 

rd_data_from_cache: assert property ( 

  @(poseged clk) disable iff (!rstn) 

  rd_mem_idx_matches_sym && 

wr_mem_idx_sym_in_cache 

    |-> rd_data == wr_mem_data_last_sym 

E. Formal Verification TCAM Based Lookup 

Environment 

Used verification strategy:  

- check either lookup or bypass command at a time; use 
symbolic variable to select command type; 

- for lookup command keep track of any but only one 
symbolic lookup key; 

- for scan command keep track of any but only one 
symbolic CAM location; 

- keep sign of presence data for symbolic key / location 
in the CAM and last written data; 

- keep valid bit for all locations in the CAM; 

- compare read data with last written data if data is in the 
CAM; 

- use reset abstraction for CAM contents:  

Reset CAM memory abstraction allow to start from any 
CAM state (contents) instead of starting from “empty” 
CAM state. That is why Formal tool does not need to go 
through sequence of transactions to reach interesting states 
including CAM almost full / full states. It will dramatically 
reduce proof time.  

Reset abstraction could be done manually by cutting 
connection of reset to CAM entries but assigning entries to 
unconnected wires, see reset abstraction example here [3]. 
On the other hand, now days Formal tools could help with 
memory reset abstraction by using dedicated commands.  

F. Formal Verification Top-level lookup environment 

with Memory Abstraction Model 

Used verification strategy: 

- It is verified that correct data from memory passed to 
the output for lookup or scan command and memory 
properly updated from update input on the right (see 
Figure 1.) 

- Any arbitrary but only one transaction is selected using 
floating pulse method (see below) and tracked; 

- Symbolic key for lookup command / symbolic index for 



26 

 

scan command assumed to be on the input interface 
when command selected; they are used to sync with 
abstraction models (see below); 

- Hash index calculator contains some arithmetic 
calculation logic which is not friendly for Formal 
Property verification; it is not verified in this 
environment but replaced with abstraction model; 

- Hash index calculator abstraction model returns 
symbolic index for symbolic key and random data for 
any other keys;  

- Memory is represented by abstraction model which 
supports writing, storing and reading data only for one 
entry at symbolic address but returns random data for 
any other accesses; this way access with wrong address 
will be easily detected; 

- Overflow CAM could be replaces with similar 
abstraction model as well but for the sake of time and 
because it is located at the boundary of the block, 
passing right data is checked at the Overflow CAM 
ports and Overflow CAM excluded (black-boxed) from 
DUT; 

- Cache module is left inside DUT RTL; it was found that 
it does not significantly affect performance, no need in 
abstraction 

Here is code illustrating Floating pulse method to select 
any but only one transaction 

wire fl_pulse; 

reg fl_pulse_done; 

always @ (posedge clk) begin 

   if(!rstn) begin 

      fl_pulse_done <= 1'b0; 

   end else if(fl_pulse) begin 

      fl_pulse_done <= 1'b1; 

   end 

end 

no_fl_pulse_when_done_model: assume property( 

   fl_pulse_done |-> (!fl_pulse) 

); 

Here is simplified code of Memory Abstraction model. 
Here we assume unknown output if read happen when write 
is in progress or vice versa. 
module fv_mem_one_entry_abs#( 

   parameter WIDTH = 1, 

   parameter ADDR_SZ = 1, 

   parameter RD_DELAY = 1, 

   parameter WR_DELAY = 1 

)( 

   // DUT inputs 

   input clk, 

   input rst, 

   input rd_en, 

   input [ADDR_SZ-1:0] rd_addr, 

   input wr_en, 

   input [ADDR_SZ-1:0] wr_addr, 

   input [WIDTH-1:0] wr_data, 

   // DUT output 

   input [WIDTH-1:0] rd_data 

); 

 

default clocking @(posedge clk); endclocking 

default disable iff rst; 

 

// symbolic address - only one address is tracked 

wire [ADDR_SZ-1:0] sym_addr;  

// symbolic initial data contents 

wire [WIDTH-1:0] sym_init_mem_data; 

// keep only one data for symbolic address 

reg [WIDTH-1:0] mem_data; 

// read pipe for matched valid 

reg [RD_DELAY-1:0] rd_pipe_valid_sym; 

 

wire rd_en_sym; // when address matches symbolic 

wire rd_data_sym; 

wire [WIDTH-1:0] rand_rd_data; // when no match 

wire [WIDTH-1:0] fv_rd_data; // calculated output  

reg [$clog2(WR_DELAY):0] wr_in_progress_cnt;   

wire wr_en_sym; 

wire wr_in_progress; 

 

assign wr_en_sym = wr_en && (wr_addr == 

sym_addr); 

always @(posedge clk) begin 

   if (rst) begin 

      mem_data <= sym_init_mem_data; 

   end else if (wr_en_sym) begin  

      mem_data <= wr_data; 

      wr_in_progress_cnt <= WR_DELAY;  

   end else if (wr_in_progress_cnt != 0) begin  

      wr_in_progress_cnt--; 

   end 

end 

assign wr_in_progress = wr_en_sym ||  

   (wr_in_progress_cnt > 0); 

 

assign rd_en_sym = rd_en && (rd_addr == 

sym_addr); 

always @(posedge clk) begin 

   if (rst) begin 

      rd_pipe_valid_sym <= 0; 

   end else if (wr_en_sym) begin 

      rd_pipe_valid_sym <= 0}; 

   end else if (rd_en_sym && !(wr_in_progress)) 

   begin 

      rd_pipe_valid_sym <= 

        {rd_pipe_valid_sym[RD_DELAY-2:0], 1'b1}; 

   end else begin 

      rd_pipe_valid_sym <= 

        {rd_pipe_valid_sym[RD_DELAY-2:0], 1'b0}; 

   end   

end 

 

assign rd_data_is_sym =  

   rd_pipe_valid_sym[RD_DELAY-1]; 

assign fv_rd_data = rd_data_is_sym? mem_data : 

   rand_rd_data; 

 

// Assign output through constraint 

output_drive__rd_data: assume property ( 

   rd_data == fv_rd_data  

); 

 

endmodule 

 

Memory abstraction model is instantiated inside 
testbench connecting to correspondent ports. Symbolic 
variables need to be synced with symbolic variables defined 
inside Formal testbench, for example: 

// memory instantiation 

fv_mem_one_entry_abs #(…) 

) lkup_mem 

( 

   .clk(clk), 

   .rst(!rstn), 

    … 

); 

// symbolic variable for memory address 

wire [ADDR_SZ-1:0] sym_lkup_mem_addr; 

sym_lkup_mem_addr_stable: assume property ( 

  ##1 sym_lkup_mem_addr == 

$past(sym_lkup_mem_addr) 

); 

// should be synced with hash index calculator 

and  

// memory abstraction model, e.g. 

lkup_mem_sync_model: assume property ( 

   (lkup_mem.sym_addr == sym_lkup_mem_addr) 

);  



27 

 

V. CONCLUSIONS 

Formal method could help to solve two critical 
functional Design Verification issues: 

- Reduce Time to Market when designers start to apply 
Formal techniques earlier in the project; 

- Improve verification quality, try to avoid chip re-spin 
by detecting simulation - resistant bugs,  

It is illustrated in example which shows some bugs close 
to simulation – resistant concept, verification strategy and 
Formal techniques. 

ACKNOWLEDGEMENTS 

Author thanks OSKI Technology team who delivered 
training on Formal Verification few years ago and continue 
to guide Formal at conference and seminar events, 
introduced simulation – resistant bug concept and left shift 
idea with Formal help. Author thanks his managers and 
colleagues from Cisco Systems for support. 

REFERENCES 

[1] Oski Technology. High-Risk Blocks Formal Sign-Off Available 
at http://www.oskitechnology.com  (accessed 01.07.2020) 

[2] Sokhatski .A. Practical Aspects of Design Verification of 
Complex chips // Problems of Perspective Micro- and 
Nanoelectronic Systems Development - 2016. Proceedings / 
edited by A. Stempkovsky, Moscow, IPPM RAS, 2016. Part2. 
P. 16-21. 

[3] Sokhatski .A. Practical Aspects of Formal Verification of 
Networking chips // Problems of Perspective Micro- and 
Nanoelectronic Systems Development - 2018. Proceedings / 
edited by A. Stempkovsky, Moscow, IPPM RAS, 2018. Part2. 
P. 16-22. 

[4]  Seligman E., Schubert T., Kumar A.K. Formal Verification: An 
Essential Toolkit for Modern VLSI Design. Waltham, MA, 
USA: Elsevier, 2015, 352P. 

[5]  Murphy B., Pandey M., Safarpour S., Finding Your Way Through 
Formal Verification. Danville, CA, USA: SemiWiki LLC, 2018, 
133P 

[6] Tatarnikov Y., Labib K. Next step of Formal Verification 
utilization Available at 
https://www.synopsys.com/community/snug/snug-silicon-
valley/location-proceedings-2018.html (accessed 03.05.2018) 

УДК 519.714 

Использование формальных методов для решения актуальных 

проблем верификации проектов СБИС 

А.А. Сохацкий 

Сиско Системс Инк., asokhats@cisco.com 

Аннотация — Моделирование остается основным методом 

функциональной проверки проектов СБИС и систем на 

кристалле. Однако этот метод не справляется с проблемами, 

связанными с растущей функциональной сложностью 

систем и их блоков. К числу основных проблем относятся: 

- Жесткие требования к срокам разработки, проверки и 

выпуска, нарушение этих сроков 

- Неполнота функциональной проверки проектов; 

необнаруженные ошибки проектов приводят к 

необходимости перепроектирования и повторного 

изготовления  

Применение метода и инструментов формальной 

верификации может помочь в решении этих проблем. В   

статье рассматриваются следующие вопросы: 

1) Как применение метода формальной верификации 

может помочь в решении проблемы сокращения сроков 

разработки и проверки проектов путем использования 

инструментов формальной верификации разработчиками 

блоков для начальной проверки с использованием 

специальных отладочных режимов формальных 

инструментов и с применением формальных приложений 

автоматически создающих утверждения (assertions); 

2) Как применение метода формальной верификации 

позволяет обнаружить ошибки проекта, которые сложно 

обнаружить путем моделирования, так называемые 

“simulation resistant bugs”; 

3) Рассматривается пример блока поиска и для него 

примеры ошибок проекта, которые сложно обнаружить 

путем моделирования; также рассматривается стратегия 

формальной проверки и используемые подходы, включая 

использование символических переменных, 

символического выбора элемента последовательности, 

абстрактной модели памяти; приводится код на языке 

SystemVerilog. 

Ключевые слова — СБИС, система на кристалле, 

формальная верификация, моделирование, RTL, 

SystemVerilog, SVA. 
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