
MES-2020. Russia. Moscow, October 2020. © IPPM RAS
22

 DOI: 10.31114/2078-7707-2020-3-22-27

Use of Formal Methods to Resolve Actual Problems of ASIC

Design Verification

А.А. Sokhatski

Cisco Systems Inc., asokhats@cisco.com

Abstract — There are some critical problems of SoC Design

Verification (DV) related to growing functional complexity

including

- Time to Market: full enough verification takes too much

time;

- Verification Quality: costly chips re-spins take place;

bugs are escaping detection by traditional verification

method.

The paper describes:

1) How Formal Verification could help to resolve Time to

Market problem by doing “left shift” of design –

verification timeline involving designers to use Formal

tool to initially clean up design

2) How Formal Verification helps to improve verification

quality and avoid re-spins by detection of simulation –

resistant bugs [1]

3) Example of Lookup Table Block, corner case bugs close

to simulation – resistant bug concept detected by Formal

Verification which will be difficult to catch by simulation;

Formal Verification strategy for the block and used

Formal techniques

Keywords — SoC, Design Verification, Formal Verification,

SystemVerilog, SVA.

I. INTRODUCTION

While simulation keeps being the main method of
functional Design Verification of chips[2], it is not able to
adequately address challenges related to growing
complexity of the chips. Two major challenges are time to
market and quality of verification – ability to avoid or
reduce number of chip re-spins. The challenges require to
use other methods, first of all, emulation and Formal
verification.

Traditionally application of Formal methods was started
from checking equivalence between RTL and gate-level
netlist. Then Formal methods started to be used to prove
particular properties represented as assertions (Formal
Property Verification [3,4,5]).

Now bunch of Formal tool applications are available.
They simplify Formal usage for particular functional
aspects, for example, Connectivity Checks, Formal
Coverage Analysis for detection of uncoverable code.

In addition to verification of particular aspects, Formal
Verification could be used for overall sign-off of design
blocks. Formal tools provide support for Formal coverage
analysis to ensure Formal verification quality [].

Paper will look how Formal Verification could help to
address verification challenges and why it is difficult to do
with just simulation. Example will be used based on the
author experience.

II. FORMAL VERIFICATION TO REDUCE TIME TO

MARKET

A. Comparison with simulation

Rough typical sequence of design and verification steps
for target block includes:

- Block design by design engineer;

- Development of verification environment by
verification engineer:

- Development and running tests and regressions; at that
time first bug and majority of bugs are found

- Running more random regressions, collecting coverage
and developing more tests

In that flow block needs to be designed, passed to
verification engineer, simulation environment developed
before first bug is found.

B. How Formal could help

Formal verification helps to reduce total development
and verification time by

- doing “left shift”: find first bug earlier and complete
earlier;

- reducing time in the last phase: no need to run random
regression more and more; Formal coverage analysis is
still required though.

The following could be done to do “left shift”:

- Use Formal method by designers at early stage for
initial cleaning of the block from bugs

- Use of Formal Applications which do not require
setting environments, e.g. Automatically generated
checks / Super lint, X-Propagation checks.

Designer could start from generation and analysis of
waveforms with use of Formal tool. It could be done by

23

defining cover properties and proving them. Formal tool
will generate waveform how to reach coverage point.

Formal tools have now special features to assist initial
bring up, for example, Formal Navigator which is part of
VC Formal. In simple case user could just select signal,
value and Formal tool will use it as cover property and will
generate waveform for that. It also assists in creation of
more complex cover properties.

After exercising design with cover properties designer
could put assertions and try to prove them. It makes sense to
start from simple assertions for particular cases.

Designer could also apply Formal Apps mentioned
above. We had the case when designer found arithmetic
overflow case which potentially could be an issue.

C. What needs to be done in advance in company /

project scope

Note that unreal scenarios could be generated for cover
properties and false failures could be detected for assertions.
In that case constraints needs to be added, in particular
constraints for input interfaces. For industry standard
protocols it makes sense to use assertion IP and for standard
protocols at company / project scope it makes sense to
develop such assertion IP[6]. For input interfaces assertions
will be used as constraints (assumptions).

Another group of assertions which could come “for
free” for designer are assertions from design reuse modules,
for example, FIFOs, credit control modules. At the company
/ project scope it makes sense to fill up such reuse modules
with SVAs for error conditions. Even simple assertions for
FIFO / credit overflow could help to detect issues with usage
of that components at upper scope.

III. FORMAL VERIFICATION TO AVOID SIMULATION

RESISTANT BUGS

Despite help of Formal tools to reduce time to market is
important Formal benefit, the main advantage and goal of
Formal method from the beginning is exhaustive proof of
design properties.

Especially it is important for designs which could
potentially contains so called “simulation - resistant bugs”,
which could be very difficult to find via simulation.

A. Why simulation-resistant bugs could escape

Simulation – resistant bugs could escape because of

- High parallelism of the design, several processing
threads crossing inside design;

- Big number of configuration inputs / registers required
verification for various combinations; each
combination might require separate simulation run

- Big number of input combinations, for example, for
packet alignments, sizes, etc.

Two last factors could be mitigated and addressed by
running random regressions for a long time. The first one is
most critical. The reasons why bugs could escape from
simulation for blocks with high parallelism include:

- It is difficult to cover all critical timing between events;

- Sequence of critical events could contain several
consecutive events;

- Critical events could be deep inside design, not obvious
and not controllable by simulation;

B. Blocks with potential simulation – resistant bugs

Signatures of such blocks include

- Several input interfaces affecting same internal state /
output;

- Dynamic structures supporting add, delete, update
operations

- Bypass logic, cache, arbitration logic

OSKI Technology is collecting list of such blocks in
different areas [1] which includes for example:

- For CPU & GPU: Instruction Fetch Queue, Load Store
unit, L2 Cache, Coherency manager, Resource
Manager;

- For Networking, Ethernet, Wireless: Forwarding
Engines, Linked-list controllers, Quality of Service
units, Buffer managers, Block aligner, Packet
Encoder/Decoder, Bypass cache and forwarding logic.

There are some examples of simulation-resistant bugs in
the next section.

Formal method should catch simulation resistant bugs
by proving assertions for ANY sequences satisfied
constraints. For that certainly set of checks should be
sufficient which could be confirmed by Formal coverage
analysis.

IV. EXAMPLE

A. Design

Here is example of Lookup Block with conceptual
diagram below.

Figure 1. Diagram of Lookup Table Block

Hash Index
Calculator

Memory

Manager

Overflow
CAM

Cache

Memory

command

result

update

24

Block takes command which could be

- Lookup data for certain key;

- Scan lookup table: read and optionally remove entry

Block sends downstream lookup result and takes update
for the lookup table.

Inside block has:

- Hash Index Calculator to select memory index for
lookup key;

- Memory Manager controlling access to lookup table in
external memory and communication with other
blocks;

- Cache based bypass logic to accommodate memory
latency as long as lookup commands could go back-to-
back and update from previous one should contain
lookup result for the next;

- Overflow CAM which contains lookup entries which
cannot be placed in the memory, it contains internal
bypass logic.

The Lookup Table block was selected for Formal
Verification because it has several activities working in
parallel: lookup, scan, update, it contains cache / bypass
logic and dynamic data.

The most critical sub-module where actually simulation
– resistant bugs were found is Overflow CAM block. Here
we have dynamic location for key inside CAM: key could
be added, removed, updated which is creating extra
complexity and potential for simulation – resistant bugs.

B. Simulation resistant bugs

Here are few examples of corner case bugs which are
illustrating concept and close to simulation – resistant bugs.
Paper describes sequence of events required for bug
detection. Bugs description and correspondent sequences
are simplified to pass the concept. Actual sequences are
more difficult to envision during test planning.

Figure 2. Waveform for 1st bug detection

There is the following sequence of 2 events when 1st bug
detected:

- Scan command with certain key1 presented at key
signal; note that key is don’t care signal for scan

command (scan command is accompanied with
memory / CAM index) but as long as simulation done
at upper level it is not primary input and is not driven to
‘X’ during simulation

- Lookup command with the same key1 as for scan
command

Bypass logic has key_match signal to check condition
when lookup done for the same key as in previous cycle

wire key_match = wr_valid && fn_key_compare

 (key, ket_d, …);

However due to bug it missed command check. Should
be

wire key_match = wr_valid && cmd_lookup_d &&

 fn_key_compare (key, ket_d, …);

This bug could be detected if we drive ‘X’ at key port
when doing simulation at the scope of the CAM overflow
module. Depending on the coding of fn_key_compare it
might require activation of X-Prop simulation mode.

However as long as simulation done at upper level
without control of the key signal it is very difficult to hit case
when “occasionally” same key set for two commands
especially as long as at upper level scan and lookup are in
independent threads and timing between scan and lookup
commands is not controllable. Note that simulation
coverage will not detect missing the issue in that case.
Formal method easily detected the bug.

Another example is related to dynamic modification:
installation new key and invalidation of entry.

Figure 3. Waveform for 2nd bug detection

Here back-to-back coming commands:

- Scan command which invalidates entry with indexA

- Lookup command for keyB which matches contents of
entry under indexA

Due to bug lookup gives HIT result but should give
MISS one which requires installation of new entry.

It’s difficult to hit such sequence via random simulation
testing but it could be hit with dedicated test. However at the
upper scope above Lookup Table Block it is much more

clk

cmd_scan

cmd_lookup

wr_valid

key

key_match

key0 key1 key1

Should

not

match

clk

cmd_scan

cmd_lookup

key keyB

scan_index indexA

with

invalidate

 key
lookup_result HIT

keyB mathes

invalidated entry
Should be

MISS

25

difficult to hit such case.

Another example is similar when we have no space
available in the CAM but some entry just invalidated in
previous cycle and available for installation of new key.

There is also case when bug detection requires sequence
of 3 events in the row which is very difficult to hit or even
to predict when putting cover properties for internal points.

Sequence here contains

- 2 scan commands: one causes update of the entry and
the other does not

- lookup command which hits the entry

Due to the bug bypass logic take info from the wrong
scan command.

C. Formal Verification Strategy for Lookup Table Block

Due to complexity it is difficult to achieve Formal prove
at the block scope for all properties. Instead considered the
following environments:

- Cache bypass logic; it is simple and rather standard
environment; it was encoded very fast and found bug
(not simulation resistant though);

- Overflow CAM; all corner-case simulation resistant
bugs found here;

- Top-level environment which checks memory
management using memory abstraction model and
checks integration of other parts

Verification strategies for the environments are
presented below illustrated with code examples for
verification techniques good to know:

- Cache verification using symbolic memory index;

- Floating pulse method to simplify checks and improve
performance by tracking only one transaction

- Memory abstraction

D. Formal Verification Cache – Bypass Environment

Basic strategy to verify cache – bypass logic:

- keep track of ANY but only one memory location;

- keep sign of presence data for that location in the cache
and last written data

- compare read data with last written data if data is in the
cache.

Here is some illustration code:

// symbolic variable which takes ANY value but

stable

// during formal prove

wire [INDEX_SZ-1:0] sym_mem_idx;

sym_mem_idx_stable: assert property (

 ##1 sym_mem_idx == $past(sym_mem_idx)

);

// check if selected index detected & keep status

of

// presence in the cache

wire wr_mem_idx_matches_sym = wr_mem_row_vld &&

 (wr_mem_idx == sym_mem_idx);

reg [CACHE_SZ-1:0] wr_mem_idx_sym_shift;

always @(posedge clk)

 wr_mem_idx_sym_shift <=

 {wr_mem_idx_sym_shift[CACHE_SZ-2:0],

 wr_mem_idx_matches_sym};

wire

wr_mem_idx_sym_in_cache=|wr_mem_idx_sym_shift;

// keep last data written for symbolic index

reg [DATA_SZ-1:0] wr_mem_data_last_sym;

always @(posedge clk)

 if (wr_mem_idx_matches_sym)

 wr_mem_data_last_sym <= wr_mem_data;

// check data from cache

rd_data_from_cache: assert property (

 @(poseged clk) disable iff (!rstn)

 rd_mem_idx_matches_sym &&

wr_mem_idx_sym_in_cache

 |-> rd_data == wr_mem_data_last_sym

E. Formal Verification TCAM Based Lookup

Environment

Used verification strategy:

- check either lookup or bypass command at a time; use
symbolic variable to select command type;

- for lookup command keep track of any but only one
symbolic lookup key;

- for scan command keep track of any but only one
symbolic CAM location;

- keep sign of presence data for symbolic key / location
in the CAM and last written data;

- keep valid bit for all locations in the CAM;

- compare read data with last written data if data is in the
CAM;

- use reset abstraction for CAM contents:

Reset CAM memory abstraction allow to start from any
CAM state (contents) instead of starting from “empty”
CAM state. That is why Formal tool does not need to go
through sequence of transactions to reach interesting states
including CAM almost full / full states. It will dramatically
reduce proof time.

Reset abstraction could be done manually by cutting
connection of reset to CAM entries but assigning entries to
unconnected wires, see reset abstraction example here [3].
On the other hand, now days Formal tools could help with
memory reset abstraction by using dedicated commands.

F. Formal Verification Top-level lookup environment

with Memory Abstraction Model

Used verification strategy:

- It is verified that correct data from memory passed to
the output for lookup or scan command and memory
properly updated from update input on the right (see
Figure 1.)

- Any arbitrary but only one transaction is selected using
floating pulse method (see below) and tracked;

- Symbolic key for lookup command / symbolic index for

26

scan command assumed to be on the input interface
when command selected; they are used to sync with
abstraction models (see below);

- Hash index calculator contains some arithmetic
calculation logic which is not friendly for Formal
Property verification; it is not verified in this
environment but replaced with abstraction model;

- Hash index calculator abstraction model returns
symbolic index for symbolic key and random data for
any other keys;

- Memory is represented by abstraction model which
supports writing, storing and reading data only for one
entry at symbolic address but returns random data for
any other accesses; this way access with wrong address
will be easily detected;

- Overflow CAM could be replaces with similar
abstraction model as well but for the sake of time and
because it is located at the boundary of the block,
passing right data is checked at the Overflow CAM
ports and Overflow CAM excluded (black-boxed) from
DUT;

- Cache module is left inside DUT RTL; it was found that
it does not significantly affect performance, no need in
abstraction

Here is code illustrating Floating pulse method to select
any but only one transaction

wire fl_pulse;

reg fl_pulse_done;

always @ (posedge clk) begin

 if(!rstn) begin

 fl_pulse_done <= 1'b0;

 end else if(fl_pulse) begin

 fl_pulse_done <= 1'b1;

 end

end

no_fl_pulse_when_done_model: assume property(

 fl_pulse_done |-> (!fl_pulse)

);

Here is simplified code of Memory Abstraction model.
Here we assume unknown output if read happen when write
is in progress or vice versa.
module fv_mem_one_entry_abs#(

 parameter WIDTH = 1,

 parameter ADDR_SZ = 1,

 parameter RD_DELAY = 1,

 parameter WR_DELAY = 1

)(

 // DUT inputs

 input clk,

 input rst,

 input rd_en,

 input [ADDR_SZ-1:0] rd_addr,

 input wr_en,

 input [ADDR_SZ-1:0] wr_addr,

 input [WIDTH-1:0] wr_data,

 // DUT output

 input [WIDTH-1:0] rd_data

);

default clocking @(posedge clk); endclocking

default disable iff rst;

// symbolic address - only one address is tracked

wire [ADDR_SZ-1:0] sym_addr;

// symbolic initial data contents

wire [WIDTH-1:0] sym_init_mem_data;

// keep only one data for symbolic address

reg [WIDTH-1:0] mem_data;

// read pipe for matched valid

reg [RD_DELAY-1:0] rd_pipe_valid_sym;

wire rd_en_sym; // when address matches symbolic

wire rd_data_sym;

wire [WIDTH-1:0] rand_rd_data; // when no match

wire [WIDTH-1:0] fv_rd_data; // calculated output

reg [$clog2(WR_DELAY):0] wr_in_progress_cnt;

wire wr_en_sym;

wire wr_in_progress;

assign wr_en_sym = wr_en && (wr_addr ==

sym_addr);

always @(posedge clk) begin

 if (rst) begin

 mem_data <= sym_init_mem_data;

 end else if (wr_en_sym) begin

 mem_data <= wr_data;

 wr_in_progress_cnt <= WR_DELAY;

 end else if (wr_in_progress_cnt != 0) begin

 wr_in_progress_cnt--;

 end

end

assign wr_in_progress = wr_en_sym ||

 (wr_in_progress_cnt > 0);

assign rd_en_sym = rd_en && (rd_addr ==

sym_addr);

always @(posedge clk) begin

 if (rst) begin

 rd_pipe_valid_sym <= 0;

 end else if (wr_en_sym) begin

 rd_pipe_valid_sym <= 0};

 end else if (rd_en_sym && !(wr_in_progress))

 begin

 rd_pipe_valid_sym <=

 {rd_pipe_valid_sym[RD_DELAY-2:0], 1'b1};

 end else begin

 rd_pipe_valid_sym <=

 {rd_pipe_valid_sym[RD_DELAY-2:0], 1'b0};

 end

end

assign rd_data_is_sym =

 rd_pipe_valid_sym[RD_DELAY-1];

assign fv_rd_data = rd_data_is_sym? mem_data :

 rand_rd_data;

// Assign output through constraint

output_drive__rd_data: assume property (

 rd_data == fv_rd_data

);

endmodule

Memory abstraction model is instantiated inside
testbench connecting to correspondent ports. Symbolic
variables need to be synced with symbolic variables defined
inside Formal testbench, for example:

// memory instantiation

fv_mem_one_entry_abs #(…)

) lkup_mem

(

 .clk(clk),

 .rst(!rstn),

 …

);

// symbolic variable for memory address

wire [ADDR_SZ-1:0] sym_lkup_mem_addr;

sym_lkup_mem_addr_stable: assume property (

 ##1 sym_lkup_mem_addr ==

$past(sym_lkup_mem_addr)

);

// should be synced with hash index calculator

and

// memory abstraction model, e.g.

lkup_mem_sync_model: assume property (

 (lkup_mem.sym_addr == sym_lkup_mem_addr)

);

27

V. CONCLUSIONS

Formal method could help to solve two critical
functional Design Verification issues:

- Reduce Time to Market when designers start to apply
Formal techniques earlier in the project;

- Improve verification quality, try to avoid chip re-spin
by detecting simulation - resistant bugs,

It is illustrated in example which shows some bugs close
to simulation – resistant concept, verification strategy and
Formal techniques.

ACKNOWLEDGEMENTS

Author thanks OSKI Technology team who delivered
training on Formal Verification few years ago and continue
to guide Formal at conference and seminar events,
introduced simulation – resistant bug concept and left shift
idea with Formal help. Author thanks his managers and
colleagues from Cisco Systems for support.

REFERENCES

[1] Oski Technology. High-Risk Blocks Formal Sign-Off Available
at http://www.oskitechnology.com (accessed 01.07.2020)

[2] Sokhatski .A. Practical Aspects of Design Verification of
Complex chips // Problems of Perspective Micro- and
Nanoelectronic Systems Development - 2016. Proceedings /
edited by A. Stempkovsky, Moscow, IPPM RAS, 2016. Part2.
P. 16-21.

[3] Sokhatski .A. Practical Aspects of Formal Verification of
Networking chips // Problems of Perspective Micro- and
Nanoelectronic Systems Development - 2018. Proceedings /
edited by A. Stempkovsky, Moscow, IPPM RAS, 2018. Part2.
P. 16-22.

[4] Seligman E., Schubert T., Kumar A.K. Formal Verification: An
Essential Toolkit for Modern VLSI Design. Waltham, MA,
USA: Elsevier, 2015, 352P.

[5] Murphy B., Pandey M., Safarpour S., Finding Your Way Through
Formal Verification. Danville, CA, USA: SemiWiki LLC, 2018,
133P

[6] Tatarnikov Y., Labib K. Next step of Formal Verification
utilization Available at
https://www.synopsys.com/community/snug/snug-silicon-
valley/location-proceedings-2018.html (accessed 03.05.2018)

УДК 519.714

Использование формальных методов для решения актуальных

проблем верификации проектов СБИС

А.А. Сохацкий

Сиско Системс Инк., asokhats@cisco.com

Аннотация — Моделирование остается основным методом

функциональной проверки проектов СБИС и систем на

кристалле. Однако этот метод не справляется с проблемами,

связанными с растущей функциональной сложностью

систем и их блоков. К числу основных проблем относятся:

- Жесткие требования к срокам разработки, проверки и

выпуска, нарушение этих сроков

- Неполнота функциональной проверки проектов;

необнаруженные ошибки проектов приводят к

необходимости перепроектирования и повторного

изготовления

Применение метода и инструментов формальной

верификации может помочь в решении этих проблем. В

статье рассматриваются следующие вопросы:

1) Как применение метода формальной верификации

может помочь в решении проблемы сокращения сроков

разработки и проверки проектов путем использования

инструментов формальной верификации разработчиками

блоков для начальной проверки с использованием

специальных отладочных режимов формальных

инструментов и с применением формальных приложений

автоматически создающих утверждения (assertions);

2) Как применение метода формальной верификации

позволяет обнаружить ошибки проекта, которые сложно

обнаружить путем моделирования, так называемые

“simulation resistant bugs”;

3) Рассматривается пример блока поиска и для него

примеры ошибок проекта, которые сложно обнаружить

путем моделирования; также рассматривается стратегия

формальной проверки и используемые подходы, включая

использование символических переменных,

символического выбора элемента последовательности,

абстрактной модели памяти; приводится код на языке

SystemVerilog.

Ключевые слова — СБИС, система на кристалле,

формальная верификация, моделирование, RTL,

SystemVerilog, SVA.

ЛИТЕРАТУРА

[1] Oski Technology. High-Risk Blocks Formal Sign-Off Available
at http://www.oskitechnology.com (accessed 01.07.2020)

[2] Сохацкий А.А. Практические аспекты верификации проектов
СБИС // Проблемы разработки перспективных микро- и
наноэлектронных систем (МЭС). 2016. №2. С. 16-23.

[3] Сохацкий А.А. Практические аспекты формальной
верификации проектов сетевых СБИС // Проблемы
разработки перспективных микро- и наноэлектронных
систем (МЭС). 2018. №2. С. 16-22.

[4] Seligman E., Schubert T., Kumar A.K. Formal Verification: An
Essential Toolkit for Modern VLSI Design. Waltham, MA,
USA: Elsevier, 2015, 352P.

[5] Murphy B., Pandey M., Safarpour S., Finding Your Way Through
Formal Verification. Danville, CA, USA: SemiWiki LLC, 2018,
133P

[6] Tatarnikov Y., Labib K. Next step of Formal Verification
utilization Available at
https://www.synopsys.com/community/snug/snug-silicon-
valley/location-proceedings-2018.html (accessed 03.05.2018).

http://www.oskitechnology.com/
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
http://www.oskitechnology.com/
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html

