DOI: 10.31114/2078-7707-2020-3-22-27

Use of Formal Methods to Resolve Actual Problems of ASIC
Design Verification
A.A. Sokhatski
Cisco Systems Inc., asokhats@cisco.com

Abstract — There are some critical problems of SoC Design
Verification (DV) related to growing functional complexity
including

- Time to Market: full enough verification takes too much
time;

- Verification Quality: costly chips re-spins take place;
bugs are escaping detection by traditional verification
method.

The paper describes:

1) How Formal Verification could help to resolve Time to
Market problem by doing “left shift” of design —
verification timeline involving designers to use Formal
tool to initially clean up design

2) How Formal Verification helps to improve verification
quality and avoid re-spins by detection of simulation —
resistant bugs [1]

3) Example of Lookup Table Block, corner case bugs close
to simulation — resistant bug concept detected by Formal
Verification which will be difficult to catch by simulation;
Formal Verification strategy for the block and used
Formal techniques

Keywords — SoC, Design Verification, Formal Verification,
SystemVerilog, SVA.

l. INTRODUCTION

While simulation keeps being the main method of
functional Design Verification of chips[2], it is not able to
adequately address challenges related to growing
complexity of the chips. Two major challenges are time to
market and quality of verification — ability to avoid or
reduce number of chip re-spins. The challenges require to
use other methods, first of all, emulation and Formal
verification.

Traditionally application of Formal methods was started
from checking equivalence between RTL and gate-level
netlist. Then Formal methods started to be used to prove
particular properties represented as assertions (Formal
Property Verification [3,4,5]).

Now bunch of Formal tool applications are available.
They simplify Formal usage for particular functional
aspects, for example, Connectivity Checks, Formal
Coverage Analysis for detection of uncoverable code.

In addition to verification of particular aspects, Formal
Verification could be used for overall sign-off of design
blocks. Formal tools provide support for Formal coverage
analysis to ensure Formal verification quality [].

Paper will look how Formal Verification could help to
address verification challenges and why it is difficult to do
with just simulation. Example will be used based on the
author experience.

Il. FORMAL VERIFICATION TO REDUCE TIME TO

MARKET
A. Comparison with simulation
Rough typical sequence of design and verification steps
for target block includes:
- Block design by design engineer;

- Development of verification environment

verification engineer:

by

- Development and running tests and regressions; at that
time first bug and majority of bugs are found

- Running more random regressions, collecting coverage
and developing more tests

In that flow block needs to be designed, passed to
verification engineer, simulation environment developed
before first bug is found.

B. How Formal could help
Formal verification helps to reduce total development
and verification time by

- doing “left shift”: find first bug earlier and complete
earlier;

- reducing time in the last phase: no need to run random
regression more and more; Formal coverage analysis is
still required though.

The following could be done to do “left shift”:

- Use Formal method by designers at early stage for
initial cleaning of the block from bugs

- Use of Formal Applications which do not require
setting environments, e.g. Automatically generated
checks / Super lint, X-Propagation checks.

Designer could start from generation and analysis of
waveforms with use of Formal tool. It could be done by

MES-2020. Russia. Moscow, October 2020. © IPPM RAS

22

defining cover properties and proving them. Formal tool
will generate waveform how to reach coverage point.

Formal tools have now special features to assist initial
bring up, for example, Formal Navigator which is part of
VC Formal. In simple case user could just select signal,
value and Formal tool will use it as cover property and will
generate waveform for that. It also assists in creation of
more complex cover properties.

After exercising design with cover properties designer
could put assertions and try to prove them. It makes sense to
start from simple assertions for particular cases.

Designer could also apply Formal Apps mentioned
above. We had the case when designer found arithmetic
overflow case which potentially could be an issue.

C. What needs to be done in advance in company /

project scope

Note that unreal scenarios could be generated for cover
properties and false failures could be detected for assertions.
In that case constraints needs to be added, in particular
constraints for input interfaces. For industry standard
protocols it makes sense to use assertion IP and for standard
protocols at company / project scope it makes sense to
develop such assertion IP[6]. For input interfaces assertions
will be used as constraints (assumptions).

Another group of assertions which could come “for
free” for designer are assertions from design reuse modules,
for example, FIFOs, credit control modules. At the company
/ project scope it makes sense to fill up such reuse modules
with SVAs for error conditions. Even simple assertions for
FIFO / credit overflow could help to detect issues with usage
of that components at upper scope.

I1l. FORMAL VERIFICATION TO AVOID SIMULATION

RESISTANT BUGS

Despite help of Formal tools to reduce time to market is
important Formal benefit, the main advantage and goal of
Formal method from the beginning is exhaustive proof of
design properties.

Especially it is important for designs which could
potentially contains so called “simulation - resistant bugs”,
which could be very difficult to find via simulation.

A. Why simulation-resistant bugs could escape
Simulation — resistant bugs could escape because of

- High parallelism of the design, several processing
threads crossing inside design;

- Big number of configuration inputs / registers required
verification for various combinations; each
combination might require separate simulation run

- Big number of input combinations, for example, for
packet alignments, sizes, etc.

Two last factors could be mitigated and addressed by
running random regressions for a long time. The first one is
most critical. The reasons why bugs could escape from
simulation for blocks with high parallelism include:

23

- Itisdifficult to cover all critical timing between events;

- Sequence of critical events could contain several
consecutive events;

- Critical events could be deep inside design, not obvious
and not controllable by simulation;

B. Blocks with potential simulation — resistant bugs

Signatures of such blocks include

- Several input interfaces affecting same internal state /
output;

- Dynamic structures supporting add, delete, update
operations

- Bypass logic, cache, arbitration logic

OSKI Technology is collecting list of such blocks in
different areas [1] which includes for example:

- For CPU & GPU: Instruction Fetch Queue, Load Store

unit, L2 Cache, Coherency manager, Resource
Manager;
- For Networking, Ethernet, Wireless: Forwarding

Engines, Linked-list controllers, Quality of Service
units, Buffer managers, Block aligner, Packet
Encoder/Decoder, Bypass cache and forwarding logic.

There are some examples of simulation-resistant bugs in
the next section.

Formal method should catch simulation resistant bugs
by proving assertions for ANY sequences satisfied
constraints. For that certainly set of checks should be
sufficient which could be confirmed by Formal coverage
analysis.

IV. EXAMPLE

A. Design

Here is example of Lookup Block with conceptual
diagram below.

Overflow update

CAM
e

Hash Index
Calculator

Memory

command Manager

—>

result

—

Cache

Memory

Figure 1. Diagram of Lookup Table Block

Block takes command which could be
- Lookup data for certain key;
- Scan lookup table: read and optionally remove entry

Block sends downstream lookup result and takes update
for the lookup table.

Inside block has:

Hash Index Calculator to select memory index for
lookup key;

Memory Manager controlling access to lookup table in
external memory and communication with other
blocks;

Cache based bypass logic to accommodate memory
latency as long as lookup commands could go back-to-
back and update from previous one should contain
lookup result for the next;

- Overflow CAM which contains lookup entries which
cannot be placed in the memory, it contains internal
bypass logic.

The Lookup Table block was selected for Formal
Verification because it has several activities working in
parallel: lookup, scan, update, it contains cache / bypass
logic and dynamic data.

The most critical sub-module where actually simulation
— resistant bugs were found is Overflow CAM block. Here
we have dynamic location for key inside CAM: key could
be added, removed, updated which is creating extra
complexity and potential for simulation — resistant bugs.

B. Simulation resistant bugs

Here are few examples of corner case bugs which are
illustrating concept and close to simulation — resistant bugs.
Paper describes sequence of events required for bug
detection. Bugs description and correspondent sequences
are simplified to pass the concept. Actual sequences are
more difficult to envision during test planning.

clk | | |

cmd_scan

cmd_lookup

wr_valid

key key0 key1l keyl

key_match Should

not

match

Figure 2. Waveform for 1st bug detection

There is the following sequence of 2 events when 1% bug
detected:

- Scan command with certain keyl presented at key
signal; note that key is don’t care signal for scan

24

command (scan command is accompanied with
memory / CAM index) but as long as simulation done
at upper level it is not primary input and is not driven to
‘X’ during simulation

- Lookup command with the same keyl as for scan
command

Bypass logic has key_match signal to check condition
when lookup done for the same key as in previous cycle

wire key match wr_valid && fn_key compare
(key, ket d, ..);

However due to bug it missed command check. Should
be

wire key match
fn_key compare

wr_valid && cmd_lookup d &&
(key, ket d, ..);

This bug could be detected if we drive ‘X at key port
when doing simulation at the scope of the CAM overflow
module. Depending on the coding of fn_key compare it
might require activation of X-Prop simulation mode.

However as long as simulation done at upper level
without control of the key signal it is very difficult to hit case
when “occasionally” same key set for two commands
especially as long as at upper level scan and lookup are in
independent threads and timing between scan and lookup
commands is not controllable. Note that simulation
coverage will not detect missing the issue in that case.
Formal method easily detected the bug.

Another example is related to dynamic modification:
installation new key and invalidation of entry.

clk | | | |
cmd_scan with
invalidate
cmd_lookup
scan_index indexA
key keyB
lookup_result HIT
keyB mathes Should be
invalidated entry MISS

Figure 3. Waveform for 2nd bug detection
Here back-to-back coming commands:
- Scan command which invalidates entry with indexA

- Lookup command for keyB which matches contents of
entry under indexA

Due to bug lookup gives HIT result but should give
MISS one which requires installation of new entry.

It’s difficult to hit such sequence via random simulation
testing but it could be hit with dedicated test. However at the
upper scope above Lookup Table Block it is much more

difficult to hit such case.

Another example is similar when we have no space
available in the CAM but some entry just invalidated in
previous cycle and available for installation of new key.

There is also case when bug detection requires sequence
of 3 events in the row which is very difficult to hit or even
to predict when putting cover properties for internal points.

Sequence here contains

- 2 scan commands: one causes update of the entry and
the other does not

- lookup command which hits the entry

Due to the bug bypass logic take info from the wrong
scan command.

C. Formal Verification Strategy for Lookup Table Block

Due to complexity it is difficult to achieve Formal prove
at the block scope for all properties. Instead considered the
following environments:

- Cache bypass logic; it is simple and rather standard
environment; it was encoded very fast and found bug
(not simulation resistant though);

- Overflow CAM; all corner-case simulation resistant
bugs found here;

- Top-level environment which checks memory
management using memory abstraction model and
checks integration of other parts

Verification strategies for the environments are
presented below illustrated with code examples for
verification techniques good to know:

- Cache verification using symbolic memory index;

- Floating pulse method to simplify checks and improve
performance by tracking only one transaction

- Memory abstraction

D. Formal Verification Cache — Bypass Environment
Basic strategy to verify cache — bypass logic:

- keep track of ANY but only one memory location;

- keep sign of presence data for that location in the cache
and last written data

- compare read data with last written data if data is in the
cache.

Here is some illustration code:

// symbolic variable which takes ANY value but
stable

// during formal prove

wire [INDEX SZ-1:0] sym mem idx;

sym mem idx stable: assert property (

##1 sym mem idx == Spast(sym mem idx)

)i

// check if selected index detected & keep status
of

// presence in the cache

wire wr mem idx matches sym = wr mem row vld &&

(wr mem idx == sym mem idx);
reg [CACHE SZ-1:0] wr mem idx sym shift;
always @ (posedge clk)
wr_mem idx sym shift <=
{wr mem idx sym shift[CACHE SZ-2:0],
wr mem idx matches sym};
wire B B B N
wr mem idx sym in cache=|wr mem idx sym shift;

// keep last data written for symbolic index
reg [DATA SZ-1:0] wr mem data last sym;
always @ (posedge clk)
if (wr_mem_ idx matches_sym)
wr mem data last sym <= wr mem data;

// check data from cache
rd data from cache: assert property (
@ (poseged clk) disable iff (!rstn)
rd mem idx matches sym &&
wr_mem idx sym in cache
|-> rd data == wr mem data last sym

E. Formal Verification TCAM Based Lookup
Environment

Used verification strategy:

- check either lookup or bypass command at a time; use
symbolic variable to select command type;

- for lookup command keep track of any but only one
symbolic lookup key;

- for scan command keep track of any but only one
symbolic CAM location;

- keep sign of presence data for symbolic key / location
in the CAM and last written data;

- keep valid bit for all locations in the CAM,;

- compare read data with last written data if data is in the
CAM;

- use reset abstraction for CAM contents:

Reset CAM memory abstraction allow to start from any
CAM state (contents) instead of starting from “empty”
CAM state. That is why Formal tool does not need to go
through sequence of transactions to reach interesting states
including CAM almost full / full states. It will dramatically
reduce proof time.

Reset abstraction could be done manually by cutting
connection of reset to CAM entries but assigning entries to
unconnected wires, see reset abstraction example here [3].
On the other hand, now days Formal tools could help with
memory reset abstraction by using dedicated commands.

F. Formal Verification Top-level lookup environment
with Memory Abstraction Model
Used verification strategy:

- Itis verified that correct data from memory passed to
the output for lookup or scan command and memory

properly updated from update input on the right (see
Figure 1.)

- Any arbitrary but only one transaction is selected using
floating pulse method (see below) and tracked,;

- Symbolic key for lookup command / symbolic index for

scan command assumed to be on the input interface
when command selected; they are used to sync with
abstraction models (see below);

- Hash index -calculator contains some arithmetic
calculation logic which is not friendly for Formal
Property verification; it is not verified in this
environment but replaced with abstraction model;

- Hash index calculator abstraction model returns
symbolic index for symbolic key and random data for
any other keys;

- Memory is represented by abstraction model which
supports writing, storing and reading data only for one
entry at symbolic address but returns random data for
any other accesses; this way access with wrong address
will be easily detected;

- Overflow CAM could be replaces with similar
abstraction model as well but for the sake of time and
because it is located at the boundary of the block,
passing right data is checked at the Overflow CAM
ports and Overflow CAM excluded (black-boxed) from
DUT;

- Cache moduleisleftinside DUT RTL,; it was found that
it does not significantly affect performance, no need in
abstraction

Here is code illustrating Floating pulse method to select
any but only one transaction

wire fl pulse;
reg fl pulse done;
always @ (posedge clk)
if (!rstn) begin
fl pulse done <= 1'b0;
end else if (fl pulse) begin
fl pulse done <= 1'bl;
end

begin

end
no_fl pulse when done model: assume property (
fl pulse done |-> (!fl pulse)
)i
Here is simplified code of Memory Abstraction model.
Here we assume unknown output if read happen when write

IS In progress or vice versa.

module fv_mem one entry abs# (
parameter WIDTH = 1,
parameter ADDR SZ = 1
parameter RD DELAY
parameter WR_DELAY

[
N

// DUT inputs

input clk,

input rst,

input rd en,

input [ADDR_SZ-1:0] rd_addr,
input wr_en,

input [ADDR_SZ-1:0] wr_addr,
input [WIDTH-1:0] wr_data,
// DUT output
input [WIDTH-1:0] rd data
)i

default clocking @ (posedge clk); endclocking
default disable iff rst;
// symbolic address - only one address is tracked

wire [ADDR SZ-1:0] sym addr;

// symbolic initial data contents

wire [WIDTH-1:0] sym init mem data;

// keep only one data for symbolic address

26

reg [WIDTH-1:0] mem data;
// read pipe for matched valid
reg [RD DELAY-1:0] rd pipe valid sym;

wire
wire

rd en sym; // when address matches symbolic
rd data sym;

wire [WIDTH-1:0] rand rd data; // when no match
wire [WIDTH-1:0] fv_rd data; // calculated output
reg [$clog2(WR DELAY):0] wr in progress _cnt;

wire wr_en sym;

wire wr in progress;

assign wr en sym = wr en &&
sym_ addr) ;
always @ (posedge clk)
if (rst) begin
mem data <= sym init mem data;
end else if (wr_en_sym) begin
mem_data <= wr_data;
wr_in_progress_cnt <= WR_DELAY;
end else if (wr_in progress cnt != 0) begin
wr_in progress_cnt--;
end
end
assign wr_ in progress = wr_en sym
(wr_in progress_cnt > 0);

(wr addr ==

begin

assign rd en sym =
sym_addr) ;
always @ (posedge clk)
if (rst) begin
rd pipe valid sym <= 0;
end else if (wr_en sym) begin
rd pipe valid sym <= 0};
end else if (rd en sym && ! (wr_in progress)
begin
rd pipe valid sym <=

= rd en && (rd addr ==

begin

{rd pipe valid sym[RD DELAY-2:0], 1'bl};
end else begin
rd_pipe valid sym <=
{rd_pipe valid sym[RD DELAY-2:0], 1'b0O};
end
end

assign rd _data_is_sym
rd pipe valid sym[RD DELAY-1];

assign fv_rd data rd_data_is_sym? mem data :
rand rd _data;

// Assign output through constraint
output _drive rd data: assume property (
rd_data fv_rd data

)i

endmodule

Memory abstraction model is instantiated inside
testbench connecting to correspondent ports. Symbolic
variables need to be synced with symbolic variables defined
inside Formal testbench, for example:

// memory instantiation
fv_mem one entry abs #(..)
) lkup mem
(
.clk(clk),
.rst(!rstn),

)i

// symbolic variable for memory address

wire [ADDR SZ-1:0] sym lkup mem addr;

sym lkup mem addr_ stable: assume property (

##1 sym_lkup mem_addr ==

Spast (sym lkup mem addr)

)i

// should be synced with hash index calculator

and

// memory abstraction model, e.g.

lkup_mem sync _model: assume property (
(lkup_mem.sym addr == sym lkup mem addr)

)i

V. CONCLUSIONS

Formal method could help to solve two critical
functional Design Verification issues:

- Reduce Time to Market when designers start to apply
Formal techniques earlier in the project;

Improve verification quality, try to avoid chip re-spin
by detecting simulation - resistant bugs,

Itis illustrated in example which shows some bugs close
to simulation — resistant concept, verification strategy and
Formal techniques.

ACKNOWLEDGEMENTS

Author thanks OSKI Technology team who delivered
training on Formal Verification few years ago and continue
to guide Formal at conference and seminar events,
introduced simulation — resistant bug concept and left shift
idea with Formal help. Author thanks his managers and
colleagues from Cisco Systems for support.

YK 519.714

REFERENCES

[1] Oski Technology. High-Risk Blocks Formal Sign-Off Available
at http://mww.oskitechnology.com (accessed 01.07.2020)

[2] Sokhatski .A. Practical Aspects of Design Verification of

Complex chips // Problems of Perspective Micro- and

Nanoelectronic Systems Development - 2016. Proceedings /

edited by A. Stempkovsky, Moscow, IPPM RAS, 2016. Part2.

P. 16-21.

[3] Sokhatski .A. Practical Aspects of Formal Verification of
Networking chips // Problems of Perspective Micro- and
Nanoelectronic Systems Development - 2018. Proceedings /
edited by A. Stempkovsky, Moscow, IPPM RAS, 2018. Part2.
P. 16-22.

[4] Seligman E., Schubert T., Kumar A.K. Formal Verification: An
Essential Toolkit for Modern VLSI Design. Waltham, MA,
USA: Elsevier, 2015, 352P.

[5] Murphy B., Pandey M., Safarpour S., Finding Your Way Through
Formal Verification. Danville, CA, USA: SemiWiki LLC, 2018,
133P

[6] Tatarnikov Y., Labib K. Next step of Formal Verification
utilization Auvailable at
https://www.synopsys.com/community/snug/snug-silicon-
valley/location-proceedings-2018.html (accessed 03.05.2018)

Hcnonp3oBanne GopMaIbHBIX METOIOB JIJISl PEIICHUSI aKTyaTbHBIX
npo0bisieM Bepudukanuu npoektoB CBUC

A.A. Coxankuii

Cucko Cucremc HUHk., asokhats@cisco.com

Annomayua — MojeJMpoBaHKHe OCTAETCH OCHOBHBIM METOAOM
¢pynxmmonanbHoii nposepku npoekroB CBUC un cucrem Ha
Kkpucraute. OJHAKO TOT METO/1 He CNPABJISAETCA ¢ Mpod/ieMamMHu,
CBSI3AHHBIMH ¢ pacTyweii (YHKIMOHAJIBHON CJIOKHOCTBIO
cucTeM 1 uX 0J10KkoB. K unciry 0CHOBHBIX IP00./1eM OTHOCATCS:

- 7Kecrkue TpeGOBaHHUA K CPOKaM Pa3pad0oTKU, MPOBEPKU U
BBIITYCKA, HAPYILIEHHE 3THX CPOKOB

- HenosHora (YHKUMOHAIBHONH TNPOBEPKH IPOEKTOB;
HeoOHApy:KeHHble OIIMOKH TNPOEKTOB MNPHUBOIAT K
HeOo0X0IMMOCTH TePeNpPOeKTHPOBAHUST M IIOBTOPHOIO
U3rOTOBJICHUS

IIpumeHenne Meroga W HHCTPYMEHTOB GopMaIbLHOI
BepU(HUKAMH MOKeT NMOMOYbL B PellleHHH 3THX npodjem. B
CTaTbe PACCMATPUBAIOTCS CJIeYIOIHE BOIIPOCHI:

1) Kaxk npumeHeHue Meroa popMaibHOi Bepupuranun
MOKeT NOMOYb B PelIeHHH NPodJieMbl COKPAIIEHUS] CPOKOB
pa3padoTKu W TIPOBEPKH NPOEKTOB IyTeM HCHOJIb30BAHUS
HHCTPYMEHTOB (opMaibHOIl Bepudukamu paspadoTyuKamMu
0JIOKOB /JI1 HAYAJIbHOW TPOBEPKH € MCIOJIbL30BAHHEM
CHENHATbHBIX OTJAJOYHBIX PeKUMOB (dopMaTbHBIX
UHCTPYMEHTOB M C NPHMeHeHHeM (POPMATBLHBIX NMPUHJIOKEHUI
ABTOMATHYECKH CO3IAIOIINX yTBep:kIeHus: (assertions);

2) Kaxk npumeHnenue meroa popMaibHOi Bepupuranun
N03B0JIIeT OOHAPY:KHTh OLIMOKM INPOEKTa, KOTOpbIe CJI0KHO
O0HApPY:KUTb NyTeM MOAeJIHPOBAHUS, TaK Ha3bIBaeMble
“simulation resistant bugs”;

3) PaccmarpuBaercs npuMep 0J10Ka MOUCKA U VISl HETO
npuMepsbl OLIMOOK NPOEKTA, KOTOPbIE CJIOKHO OOHAPYKUTH

27

mMyTeM MOJACTUPOBAHUA; TAKIKE PaCCMaTPUMBAECTCHA CTpPpaTerusi
(opMasIbHOIi IPOBEPKH M HCHO/b3yeMble MOIXO0AbI, BKIKOYAs
HCIOJIb30BAHHUC CUMBOJIHYCCKUX NMEePEeEMEHHBIX,
CHUMBOJJIHYECKOI'0 Bblﬁopa JJIEMECHTA II0CJICA0BATCJIbHOCTH,
aﬁcmamoﬁ MOJeIH INaMSATH; NPUBOAUTCA KO Ha SI3bIKe
SystemVerilog.

Knwuesvie cnosa — CBUC, cucrema Ha KpHCTaJLIe,
¢opmanbHasi BepuduKanusi, MoJeTMPOBaHUe, RTL,
SystemVerilog, SVA.

JINTEPATYPA

[1] Oski Technology. High-Risk Blocks Formal Sign-Off Available
at http://www.oskitechnology.com (accessed 01.07.2020)

[2] Coxaukuii A.A. TIpakTHUeCKre aCTIeKThI BepUPHKAIMH POESKTOB

CBUC // TIpobmnembl pa3pabOTKK MEPCHEKTHBHBIX MHUKPO- U

HaHOANeKTpoHHBIX cucteM (MOC). 2016. Ne2. C. 16-23.

Coxauxuit A.A. TlpakTnueckne acmekTbl (opMaabHON

Bepudukaimn npoektoB cereBbix CBUC // TlpoGmemsr

pa3paboTKi MEPCHeKTUBHBIX MHUKPO- U HAHOBJIEKTPOHHBIX

cucteM (MDC). 2018. Ne2. C. 16-22.

[4] Seligman E., Schubert T., Kumar A.K. Formal Verification: An
Essential Toolkit for Modern VLSI Design. Waltham, MA,
USA: Elsevier, 2015, 352P.

[5] Murphy B., Pandey M., Safarpour S., Finding Your Way Through
Formal Verification. Danville, CA, USA: SemiWiki LLC, 2018,
133P

[6] Tatarnikov Y., Labib K. Next step of Formal Verification
utilization Auvailable at
https://www.synopsys.com/community/snug/snug-silicon-
valley/location-proceedings-2018.html (accessed 03.05.2018).

3]

http://www.oskitechnology.com/
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
http://www.oskitechnology.com/
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html
https://www.synopsys.com/community/snug/snug-silicon-valley/location-proceedings-2016.html

