

Троичные коды с суммированием и их модификации

Дмитрий Ефанов, д-р техн. наук, Российский университет транспорта

TrES-4b@yandex.ru

Введение

8 60 083,60,000

1840 – Т. Фаулером разработана первая троичная вычислительная машина;

S 50 00 19 8

- **1958** группой исследователей МГУ под руководством Н. П. Брусенцова разработана первая отечественная троичная электронная вычислительная машина «Сетунь»;
- 1959 серийное производство машины «Сетунь»;
- 1970 разработка второй версии троичной машины «Сетунь-70»;
- **2008** разработка в политехническом университете Калифорнии трехтритной цифровой компьютерной системы TCA2 версии v2.0 (Д. Коннелли, К. Патель, А. Чавез при поддержке профессора Ф. Нико).

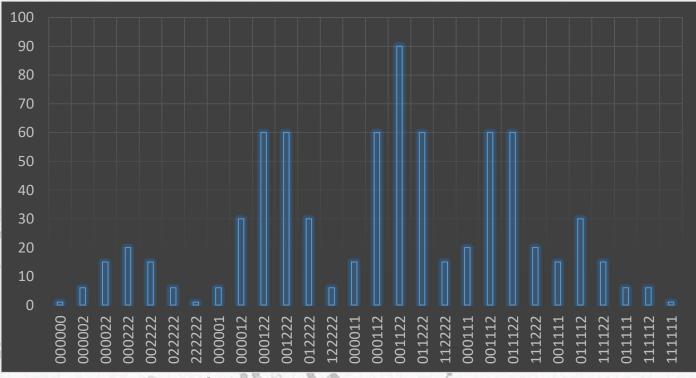
Введение

Несмотря на малую известность разработок в области троичной цифровой техники до сих пор исследователи всего мира не потеряли интереса к ней, к методам построения подобных устройств, обнаружения неисправностей в них и защиты передаваемых данных. Целым направлением исследований является разработка методов кодирования троичных данных.

В данной работе освещаются некоторые способы построения простых троичных кодов, основанных на принципе суммирования значений информационных разрядов, а также способы их модификации. Подобные коды с суммированием, как и известные коды с суммированием, реализуемые в бинарной логике, могут впоследствии найти применение при построении узлов троичных цифровых систем, средств их технического диагностирования, а также при передаче данных между ними.

Троичный код с суммированием

Алгоритм 1. Правила определения значений разрядов контрольных векторов троичных кодов с суммированием:


- 1. В информационном векторе длиной m определяется число разрядов, равных 1, и число разрядов, равных 2, числа r_1 и r_2 соответственно.
- 2. Число r_1 представляется в троичном виде и записывается в $k_1 = \lceil \log_3(m+1) \rceil$ старших разрядах контрольного вектора.
- 3. Число r_2 представляется в троичном виде и записывается в $k_2 = \lceil \log_3(m+1) \rceil$ младших разрядах контрольного вектора. $\sum (m,k)$ код

К примеру, получим значения разрядов контрольного вектора кода с суммированием для информационного вектора $< 0121\ 2101\ 2111\ 1100 >$. Длина информационного вектора m=16. Отсюда следует, что k=6. Числу $r_1=9$ соответствует троичный вектор < 100 >. Числу $r_2=3$ соответствует троичный вектор < 010 >. Таким образом, контрольный вектор кода будет иметь вид $< 100\ 010 >$.

Троичный код с суммированием

r ₁ -r ₂	x ₆ x ₅ x ₄ x ₃ x ₂ x ₁	Число информационн ых векторов	Число возможных необнаруживае мых ошибок
00-00	000000	1	0
00-01	000002	6	30
00-02	000022	15	210
00-10	000222	20	380
00-11	002222	15	210
00-12	022222	6	30
00-20	222222	1	0
01-00	000001	6	30
01-01	000012	30	870
01-02	000122	60	3540
01-10	001222	60	3540
01-11	012222	30	870
01-12	122222	6	30
02-00	000011	15	210
02-01	000112	60	3540
02-02	001122	90	8010
02-10	011222	60	3540
02-11	112222	15	210
10-00	000111	20	380
10-01	001112	60	3540
10-02	011122	60	3540
10-10	111222	20	380
11-00	001111	15	210
11-01	011112	30	870
11-02	111122	15	210
12-00	011111	6	30
12-01	111112	6	30
20-00	111111	1	0
Общее количество		729	34440

Строящийся по алгоритму 1 троичный код будет обладать следующей особенностью. Любому контрольному вектору данного кода будут соответствовать все информационные векторы, имеющие одинаковое число разрядов, равных 1 и 2. То есть одной композиции разрядов будет соответствовать один контрольный вектор.

Распределение информационных векторов на контрольные группы Представители кодовых векторов для кода с m=6

Модульный троичный код с суммированием

Алгоритм 2. Правила определения значений разрядов контрольных векторов модульных троичных кодов с суммированием:

- 1. Устанавливаются значения модулей M_1 и M_2 : $M_1, M_2 \in \{3^1, 3^2, ..., 3^{\lceil \log_3(m+1) \rceil 1} \}$.
- 2. В информационном векторе длиной m определяется число разрядов, равных 1, и число разрядов, равных 2, числа r_1 и r_2 соответственно.
- 3. Определяются значения наименьших неотрицательных вычетов чисел r_1 и r_2 по соответствующим модулям M_1 и M_2 : числа $r_{M_1} = r_1 \pmod{M_1}$ и $r_{M_2} = r_2 \pmod{M_2}$.
- 4. Число r_{M_1} представляется в троичном виде и записывается в $k_1 = \lceil \log_3 M_1 \rceil$ старших разрядах контрольного вектора.
- 5. Число r_{M_2} представляется в троичном виде и записывается в $k_2 = \lceil \log_3 M_2 \rceil$ младших разрядах контрольного вектора.

$$\sum^{M_1/M_2} ig(m,kig)$$
 код

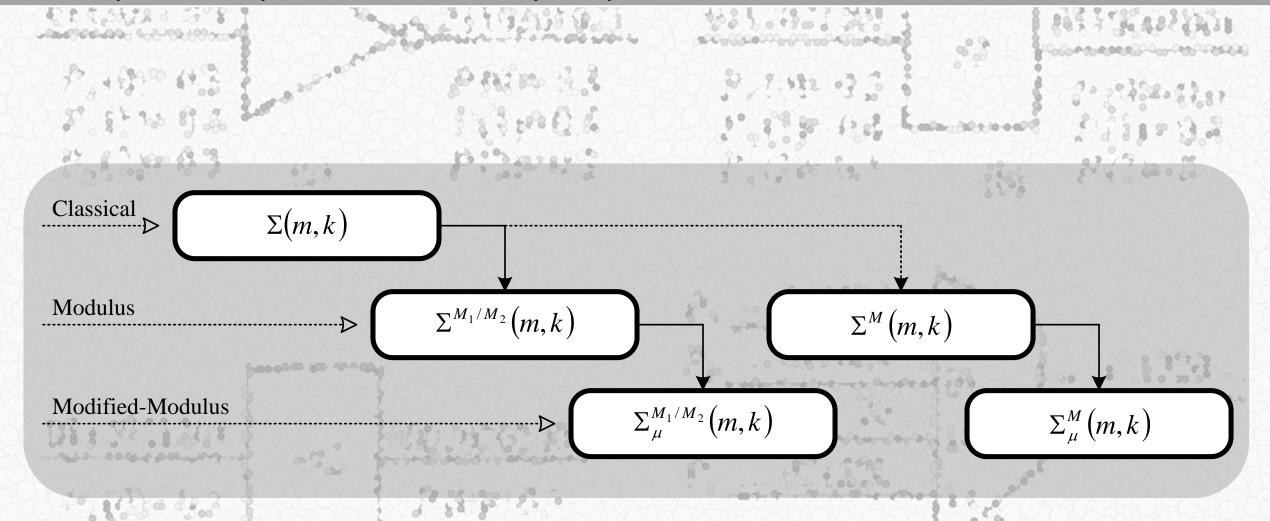
Для рассмотренного ранее примера с информационным вектором < 0121 2101 2111 1100 > получим значения разрядов контрольного вектора модульного кода. Числа r_1 =9 и r_2 =3. Определяем вычеты данных чисел — числа 0 и 3 соответственно. Первому вычету соответствует вектор < 00 >, а второму — < 10 >. Таким образом, контрольный вектор модульного кода будет иметь вид < 00 10 >.

Модульно модифицированный троичный код с суммированием

Алгоритм 3. Правила определения значений разрядов контрольных векторов модульно модифицированных троичных кодов с суммированием:

- 1. Устанавливаются значения модулей M_1 и M_2 : $M_1, M_2 \in \{3^1, 3^2, ..., 3^{\lceil \log_3(m+1) \rceil 1}\}$
- 2. В информационном векторе длиной m определяется число разрядов, равных 1, и число разрядов, равных 2, — числа r_1 и r_2 соответственно.
- 3. Определяются значения наименьших неотрицательных вычетов чисел r_1 и r_2 по соответствующим модулям M_1 и M_2 : числа $r_{M_1} = r_1 \pmod{M_1}$ и $r_{M_2} = r_2 \pmod{M_2}$.
- 4. Определяется значение поправочного коэффициента δ, равного сумме по модулю M=3 заранее установленных разрядов информационного вектора.
- 5. Вычисляется значение модифицированного веса информационного
- вектора: $W = r_{M_2} + r_{M_1} M_2 + \delta (M_1 + M_2)$. 6. Число W представляется в троичном виде $\sum_{n=1}^{M_1/M_2} (m,k)$

и записывается в разрядах контрольного вектора.
$$\sum_{\mu}^{M_1/M_2} (m,k)$$
 код


Для рассмотренного ранее примера с информационным вектором < 0121 2101 2111 1100 > получим разрядов контрольного вектора модифицированного кода, для которого коэффициент δ определяется как сумма по модулю M=3 старших восьми разрядов. Числа $r_1=9$ и $r_2=3$. Значения вычетов - 0 и 3 соответственно. Значение коэффициента $\delta = 1 \oplus 0 \oplus 1 \oplus 2 \oplus 1 \oplus 2 \oplus 1 \oplus 0 = 2$. Первому вычету соответствует вектор < 00 >, а второму - < 10 >. Таким образом, контрольный вектор строящегося кода будет иметь вид < 2 00 10 >.

Классификация троичных кодов с суммированием

1983 e &

8 3 100 03

Mary St. 3

Заключение

Представленные в данной работе способы построения троичных кодов с суммированием позволяют получать коды, имеющие относительно низкую избыточность, что определяет и возможности их эффективного применения при реализации контролепригодных троичных цифровых устройств и их диагностического обеспечения.

Описанные троичные коды обладают возможностью обнаружения любых ошибок, возникающих в информационных векторах кодовых слов, которые приводят к нарушению чисел r_1 и r_2 (композиции значений). Другими словами, данный код принадлежит к кодам с обнаружением любых некомпозиционных ошибок (нарушающих числа r_1 и r_2) в информационных векторах. Несмотря на отмеченное преимущество, коды с суммированием используют не все возможные контрольные векторы, а также имеют высокое общее количество необнаруживаемых ошибок (все эти ошибки принадлежат к типу композиционных ошибок). Первый недостаток ликвидируется при построении модульных кодов с суммированием, а второй — при построении модульно модифицированных кодов с суммированием.

Троичные коды с суммированием – перспективный класс избыточных кодов, пригодных для их применения при синтезе цифровых устройств, функционирующих в троичной логике и наделенных особыми диагностическими свойствами: контролепригодными и самопроверяемыми структурами.