Арсенид-галлиевые операционные усилители с умножителями крутизны входных дифференциальных каскадов

Н.Н. Прокопенко 1,2 , О.В. Дворников 3 , В.Е. Чумаков 1 , Д.В. Клейменкин 1

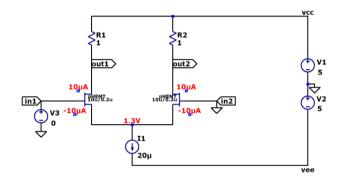
¹ Донской государственный технический университет, г. Ростов-на-Дону, prokopenko@sssu.ru

² Институт проблем проектирования в микроэлектронике РАН, г. Зеленоград

³ ОАО «Минский научно-исследовательский приборостроительный институт», г. Минск

Рассматриваются базовые Аннотаиия схемотехнические решения операционных усилителей (ОУ), ориентированные на изготовление на одном GaAs кристалле полевых транзисторов (field effect transistor, FET) со встроенным каналом n-типа и транзисторов. Предлагается перспективная архитектура трехкаскадного ОУ на основе рНЕМТ (pseudo morphic high electron mobility transistor) и p-n-р НВТ (hetero junction bipolar transistor), в которой реализуются малые значения систематической составляющей напряжения смещения нуля, обусловленной влиянием токов базы ртранзисторов температурными его радиационными изменениями. Исследуется варианта построения входных каскадов, в которых предусмотрено увеличение на 1-2 порядка крутизны усиления при работе рНЕМТ в микроамперных диапазонах токов (10-100 мкА).

Ключевые слова — операционный усилитель, GaAs pHEMT, GaAs p-n-p HBT, напряжение смещения нуля, крутизна усиления дифференциального каскада.


I. Введение

Анализ тенденций создания совершенствования существующих технологических маршрутов изготовления аналоговых микросхем перспективность арсенид-галлиевых показывает обеспечивающих работоспособность технологий. широком аналоговых микросхем В диапазоне температурных и радиационных воздействий [1-5].

Совмещенные в рамках одной технологии арсенидгаллиевые FET и p-n-p/n-p-n транзисторы созданы несколькими фирмами [6-9]. В настоящее время Минский НИИ радиоматериалов Академии наук Белоруссии разрабатывает подобный технологический процесс (https://mniirm.by/).

При работе GaAs FET в микрорежиме, т.е при токах стока 10-100 мкА, приходится принимать специальные меры по повышению крутизны усиления входного дифференциального каскада (ДК), в т.ч. описанные в статьях [10, 11]. Традиционное последовательное включение двух-трех классических ДК для увеличения разомкнутого коэффициента усиления ОУ по напряжению не всегда реализуемо при малых напряжениях питания [12].

На рис. 1 представлена проходная характеристика классического дифференциального каскада на рНЕМТ GaAs транзисторах при токах стока 10 мкA.

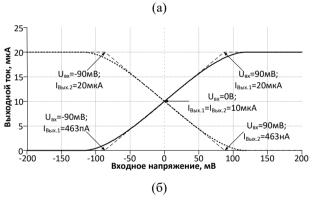


Рис. 1. Статический режим GaAs дифференциального каскада в среде LTSpice при I_1 =20 мкA (а) и зависимость выходных токов ДК от входного напряжения (б)

Как следует из графиков на рис. 16, при токе стока входных транзисторов 10 мкА крутизна дифференциального каскада не превышает $0.2 \cdot 10^{-3}$ А/В, а при токе общей истоковой цепи в 200 мкА она увеличивается до $0.7 \cdot 10^{-3}$ А/В. Кроме этого, диапазон активной работы данного FET ДК (напряжение ограничения $U_{\rm rp}$ [12]), существенно влияющий на максимальную скорость нарастания выходного напряжения ОУ, составляет порядка $U_{\rm rp}$ =90 мВ. Это практически совпадает с $U_{\rm rp}$ каскадов на биполярных транзисторах [12].

Цель и новизна настоящей статьи состоит в рассмотрении перспективной архитектуры ОУ на GaAs FET и p-n-р транзисторах, а также новых (в сравнении с [13-15]) примеров построения входных ДК, в которых предусмотрены интегральные схемотехнические решения классического входного параллельно-балансного каскада и специальных схем умножения его крутизны.

II. Типовая архитектура GaAs операционного усилителя

Перспективная обобщенная схема ОУ на GaAs FET и р-п-р транзисторах приведена на рис. 2. Операционный усилитель содержит классический входной дифференциальный каскад ДК1, вместо которого желательно применение специальных ДК с умножением крутизны усиления, в т.ч. предложенных нами в [13-15]. ДК1 имеет токовые выходы (Вых.і1, Вых.і2), согласованные с положительной шиной источника питания. Промежуточный каскад ОУ реализован на транзисторе VT6, а источники опорного тока в схеме рис. 2 выполнены на FET транзисторах VT3, VT7.

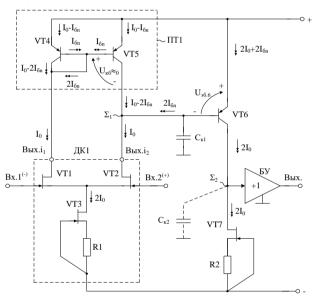


Рис. 2. Рекомендуемая архитектура операционного усилителя на GaAs FET и p-n-p транзисторах

Замечательная особенность схемы на рис. 2, в отличие от многих других известных архитектур ОУ с другими промежуточными каскадами и другими токовыми зеркалами (ПТ1), состоит в том, что здесь систематическая составляющая напряжения смещения нуля (U_{cm}) может не зависеть от абсолютных значений коэффициента усиления по току базы β идентичных биполярных транзисторов VT4, VT5, VT6, а также от их идентичных температурных и радиационных изменений. Действительно, для высокоимпедансного узла Σ_1 ОУ (рис. 2) можно составить следующие уравнения по первому закону Кирхгофа

$$I_{\kappa 4} = I_0 - 2I_{6n}, I_{34} = I_{35} = I_0 - I_{6n}, I_{\kappa 5} = I_0 - 2I_{6n}, I_p = I_{\kappa 5} + 2I_{6n} - I_0 \approx 0,$$
 (1)

где $I_{\kappa i} \left(I_{\ni i} \right)$ — ток коллектора (эмиттера) і-го транзистора,

 I_{6n} — статический ток базы p-n-p транзисторов при $I_{n}=I_{0}$.

 I_p — разностный ток в узле Σ_1 , определяющий уровень систематической составляющей напряжения смещения нуля, обусловленный влиянием β транзисторов. Причем $U_{\rm cm} = I_{\rm p}/G_{\rm ДK}$, где $G_{\rm ДK}$ - крутизна усиления входного каскада.

Таким образом, в высокоимпедансном узле Σ_1 ОУ на рис. 2 обеспечивается взаимная компенсация выходного тока токового зеркала ПТ1, тока базы транзистора VT6 и выходного тока ДК1. Если в схеме с высокой точностью обеспечить $U_{\kappa 6} \approx 0$ для транзистора VT5, то это станет первым необходимым условием минимизации $U_{\rm cm}$, которое при идентичных VT4, VT5, VT6 сводится к идентичному построению источников опорного тока (ИОТ) на транзисторах VT3, VT7, для которых сопротивления резисторов R1 и R2 должны быть идентичными.

III. ОСНОВНЫЕ МОДИФИКАЦИИ ВХОДНЫХ КАСКАДОВ С УМНОЖИТЕЛЕМ КРУТИЗНЫ

В схеме ДК на рис. З введена отрицательная обратная связь (ООС) по синфазному сигналу, которая обеспечивается транзистором VT7. За счет выбора источника опорного напряжения Е₀ (стабилитрона, р-п переходом, нескольких или простейших устанавливается транзисторных стабилизаторов) постоянной заданный уровень составляющей напряжения на базе VT7:

$$U_{67} = V_{dd} - U_{96.7} - E_0. (2)$$

Резисторы R1 и R2 определяют статический ток стока транзисторов VT1 и VT2 ($I_c = I_0 = U_{3и.4}/R_1$). В качестве источника опорного тока I_1 целесообразно использовать три параллельно включенных каскодных ИОТ с R3=R2=R1 (рис. 36).

Изменение напряжения на входе Bx.1 схемы рис. За на величину $u_{\text{вх}}$ преобразуется в приращение тока стока VT1, который создает в первом высокоимпедансном узле Σ_1 приращение напряжения

$$u_{\Sigma 1} = R_{i\Sigma 1} G_{\text{JK}},\tag{3}$$

где $R_{i\Sigma 1}$ — эквивалентное сопротивление в высокоимпедансном узле Σ_1 ;

 $G_{\text{ДК}}$ — эквивалентная крутизна усиления входного ДК на транзисторах VT1, VT2.

Напряжение $u_{\Sigma 1}$ с единичным коэффициентом передается в цепь истока VT4 и далее вызывает изменения тока стока VT3 и выходного тока ДК:

$$i_{\text{BMX},1} \approx i_{c3} \approx u_{\Sigma 1} / (S_3^{-1} + S_5^{-1}),$$
 (4)

где S_3 , S_5 - крутизна стоко-затворных характеристик VT3, VT5.

Как следствие эффективная крутизна $G_{\rm JK}^*$ входного каскада на рис. За существенно превышает крутизну $G_{\rm JK}$ простейшего ДК на GaAs транзисторах (рис. 1)

$$G_{\text{ДК}}^* = R_{i\Sigma 1} G_{\text{ДK}} \frac{S_3 S_5}{S_3 + S_5} = \frac{i_{\text{ВЫХ.1}}}{u_{\text{BX}}}.$$
 (5)

Причем

$$R_{i\Sigma 1} \approx (S_1^{-1} + S_2^{-1})\mu_1^{-1},$$
 (6)

где $\mu_1^{-1}=10^{-2}\div 10^{-3}$ - коэффициент внутренней обратной связи транзистора VT1 в схеме с общим затвором, учитывающий влияние его напряжения затвор-сток на смещение стоко-затворной характеристики при токе истока I_s = I_0 =const.

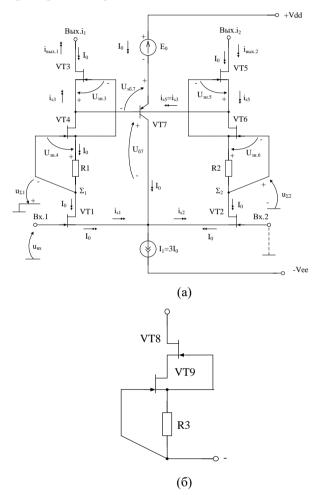


Рис. 3. GaAs входной ДК с умножителем крутизны (a) и схема источника опорного тока \mathbf{I}_1 (б)

Основное отличие схемы ДУ на рис. 4 от схемы ДК на рис. 3 - несколько другое введение ООС - в цепь стока транзисторов VT1, VT2 с помощью транзисторов VT7, а также применение в качестве E_0 резистора R3. В данной схеме входной дифференциальный каскад может быть выполнен по другим более сложным параллельно-балансным структурам [12].

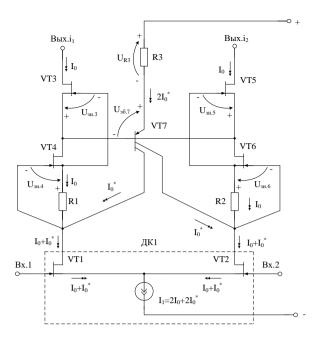


Рис.4. Входной дифференциальный каскад с ООС по цепям стока входных транзисторов VT1, VT2

В схеме на рис. 5 ООС, стабилизирующая уровень постоянного напряжения на истоках транзисторов VT5 и VT6 (U_S), вводится через ИОТ в общей истоковой цепи. Причем $U_S = U_{96.7} + 2I_0^*R_3$, где $U_{96.7}$ – напряжение эмиттер-база VT7, $2I_0^*$ - выходной ток ИОТ.

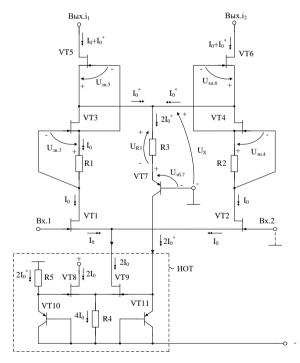


Рис. 5. Входной ДК с ООС по цепи источника опорного тока ИОТ

На рис. 6 показана проходная характеристика ДК рис. 5, из которого следует, что крутизна $G^*_{\ \ ДK}$ в модифицированной схеме при идентичных токах стока

 $(I_c=200 \ {\rm MkA})$ увеличивается с 0,7·10⁻³ A/B до 67,6·10⁻³ A/B, т.е. почти в 100 раз.

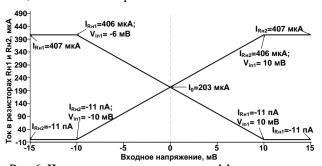
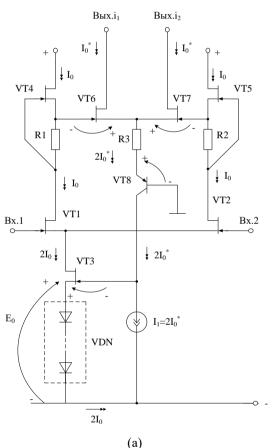



Рис. 6. Проходные характеристики дифференциального каскада на рис. 5

схеме на рис. 7a используется другой схемотехнический введения OOC прием синфазному сигналу, необходима которая ДЛЯ обеспечения заданного статического режима. Здесь в качестве источника опорного напряжения Е₀>U_{3и,3} могут использоваться прямосмещенные р-п переходы простейшие транзисторные стабилизаторы напряжения.

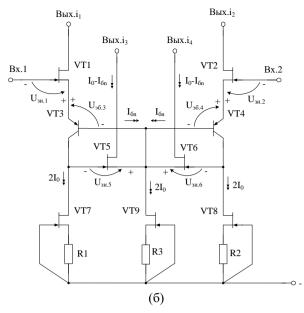


Рис. 7. Дифференциальные усилители с умножителями крутизны

IV. GAAS ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ С ПОВЫШЕННЫМ РАЗОМКНУТЫМ КОЭФФИЦИЕНТОМ УСИЛЕНИЯ

В тех случаях, когда в ОУ необходимо получить повышенные значения Ку необходимо применять схемы с несколькими высокоимпедансными узлами, например, схему на рис. 8.

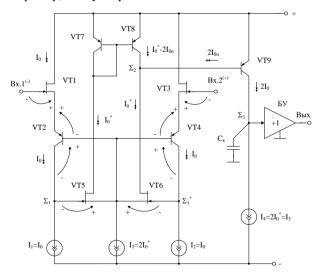


Рис. 8. GaAs операционный усилитель с повышенным коэффициентом усиления по напряжению

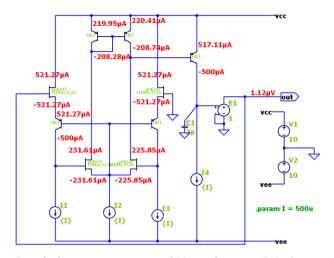


Рис. 9. Статический режим ОУ рис. 8 в среде LTspice с использованием моделей GaAs pHEMT и p-n-p HBT при $I_1=I_2=I_3=I_4=500~{\rm m}{\rm \kappa}A$

Особенность схемы ОУ – малый уровень систематической составляющей напряжения смещения нуля (1,12 мкB), что обеспечивается рассмотренным ранее эффектом взаимной компенсации токов базы р-n-р биполярных транзисторов в высокоимпедансном узле $\Sigma 1$ (рис. 2, формулы (1)).

Логарифмическая амплитудно-частотная характеристика (ЛАЧХ) коэффициента усиления по напряжению разомкнутого ОУ рис. 9 приведена на рис. 10.

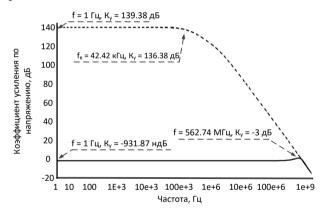


Рис. 10. ЛАЧХ коэффициента усиления по напряжению ОУ на рис. 9

Таким образом, рассмотренная схема ОУ на рис. 9 обеспечивает экстремально высокие значения коэффициента усиления (около 140 дБ), что достаточно для многих применений.

V. ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ С УМНОЖИТЕЛЯМИ КРУТИЗНЫ В ПРОМЕЖУТОЧНЫХ КАСКАДАХ

Предлагаемая ниже схема ОУ (рис. 11) содержит умножитель крутизны усиления в промежуточном «перегнутом» каскоде, который выполнен на транзисторах VT7, VT8. Второй промежуточный «перегнутый» каскод реализован на биполярных транзисторах VT9, VT10, а также источнике опорного

тока на транзисторе VT11. Схема ОУ на рис. 11 имеет два высокомпедансных узла Σ_1 (Σ_1^*) и Σ_2 , что позволяет получить повышенный коэффициент усиления по напряжению. Отрицательная обратная связь по выходному синфазному сигналу первого «перегнутого» каскода вводится для стабилизации статического режима с помощью транзисторов VT3, VT4.

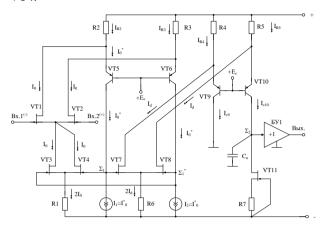


Рис. 11. GaAs операционный усилитель на двух «перегнутых» каскодах

В схеме на рис. 12 отрицательная обратная связь по выходному синфазному сигналу «перегнутого» каскода вводится через источник опорного тока на транзисторе VT3. Источники опорного тока $\rm I_1$ и $\rm I_2$ в данном ОУ выполняются на FET транзисторах.

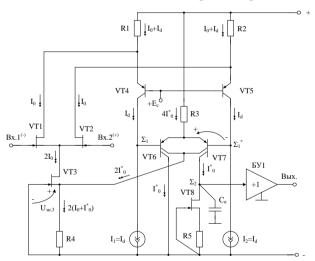


Рис. 12. Операционный усилитель с двумя высокоимпедансными узлами

Особенность схем ОУ на рис. 11 и рис. 12 состоит в том, что в них не применяются токовые зеркала, реализация которых на FET со встроенным каналом затруднена.

VI. ЗАКЛЮЧЕНИЕ

Рассмотрены перспективные схемотехнические решения арсенид-галлиевых операционных усилителей на FET с встроенным каналом n-типа и p-n-p

биполярных транзисторах, которые рекомендуются для построения аналоговых микросхем с малым статическим током потребления и повышенным коэффициентом усиления по напряжению.

Компьютерное моделирование дифференциальных каскадов с умножителями крутизны показывает, что данный схемотехнический прием более перспективен, чем последовательное включение нескольких классических ДК, которые часто используются для увеличения разомкнутого коэффициента усиления.

Поддержка

Исследование выполнено за счет гранта Российского научного фонда (проект No. 18-79-10109- Π).

Литература

- [1] Hibi Y. et al. Cryogenic ultra-low power dissipation operational amplifiers with GaAs JFETs //Cryogenics. 2016. T. 73. C. 8-13
- [2] Fujiwara M., Sasaki M. Performance of GaAs JFET at a cryogenic temperature for application to readout circuit of high-impedance detectors //IEEE transactions on electron devices. 2004. T. 51. №. 12. C. 2042-2047
- [3] Fujiwara M., Sasaki M., Akiba M. Reduction method for low-frequency noise of GaAs junction field-effect transistor at a cryogenic temperature //Applied physics letters. – 2002. – T. 80. – №. 10. – C. 1844-1846
- [4] Shur M. S. GaAs devices and circuits. Springer Science & Business Media, 2013.
- [5] Кульчицкий Н. А., Наумов А. В., Старцев В. В. Новые тенденции развития рынка приборов на арсениде галлия //Успехи прикладной физики. – 2020. – Т. 8. – №. 2. – С. 137.
- [6] J. Y. Yang, F. J. Morris, D. L. Plumton, and E. N. J. Jeffrey, "GaAs BIJFET technology for linear circuits," in Dig. 1989 GaAs IC Symp., pp. 341–344
- [7] F.J. Morris, D. L. Plumton, J.-Y. Yang, H.-T. Yuan, "Integrated circuit composed of group III-V compound field effect and bipolar semiconductors", US Patent 5.068.756, Nov. 26, 1991

- [8] D.L. Plumton, F. J. Morris, J.-Y. Yang, "Method to integrate HBTs and FETs", US Patent 5.077.231, Dec. 31, 1991
- [9] Brian Moser, W. Wohlmuth, S. Nedeljkovic, W. Clausen, D. Halchin, R. Vass, and M. Fresina, "An InGaP/GaAs HBT/JFET BiFET technology for PA bias circuit applications", CS MANTECH Conference, April 14-17, 2008, Chicago, Illinois, USA, pp.1-4
- [10] Дворников О.В., Павлючик А.А., Прокопенко Н.Н., Чеховский В.А., Кунц А.В., Чумаков В.Е. Арсенидгаллиевый аналоговый базовый кристалл // Проблемы разработки перспективных микро- и наноэлектронных систем (МЭС). 2021. Выпуск 2. С. 47-54. doi:10.31114/2078-7707-2021-2-47-54
- [11] О.В. Дворников, А.А. Павлючик, Н.Н. Прокопенко, В.А. Чеховский, А.В. Кунц, В.Е. Чумаков. Унифицированные схемотехнические решения аналоговых арсенид-галлиевых микросхем // Известия высших учебных заведений. Электроника. Т.27. №4, 2022 г.
- [12] Н.Н.Прокопенко. Нелинейная активная коррекция в прецизионных аналоговых микросхемах: монография Ростов-на-Дону: Изд-во Северо-Кавказского научного центра высшей школы, 2000. 222 с.
- [13] N. N. Prokopenko, V. E. Chumakov, I. V. Pakhomov, A. V. Bugakova, R. K. Khubiev and A. V. Avilov, "Circuit Design of CJFET OPA Based on the Differential Stage with a Slope Multiplier," 2021 29th Telecommunications Forum (TELFOR), 23-24 November 2021, Belgrade, Serbia, pp. 1doi: 10.1109/TELFOR52709.2021.9653418 (Схемотехника **CJFET** OPA Основе на Дифференциального Каскада Умножителем Крутизны)
- [14] N. N. Prokopenko, V. E. Chumakov, I. V. Pakhomov, A. V. Bugakova, D. Y. Denisenko and I. L. Vialikov, "Gallium-Arsenide JFET Op-Amp with High Open-Loop Gain," 2021 29th Telecommunications Forum (TELFOR), 23-24 November 2021, Belgrade, Serbia, pp. 1-4, doi: 10.1109/TELFOR52709.2021.9653228 (Gallium-Arsenide JFET Op-Amp с повышенным разомкнутым усилением)
- [15] Савченко Е.М., Прокопенко Н.Н., Чумаков В.Е., Пронин А.А., Дроздов Д.Г. Арсенид-галлиевый дифференциальный каскад с умножителем крутизны усиления: заявка на патент № 2022107168; заявл. 17.03.2022 (1000в)

Gallium Arsenide Operational Amplifiers with Transconductance Multipliers of Input Differential Stages

N.N. Prokopenko^{1,2}, O.V. Dvornikov³, V.E. Chumakov¹, D.V. Kleimenkin¹

¹ Don State Technical University (Rostov-on-Don, Russia), prokopenko@sssu.ru

²Institute for Design Problems in Microelectronics RAS (Zelenograd, Russia)

³ Minsk Research Instrument-Making Institute JSC (MNIPI JSC) (Minsk, Republic of Belarus)

Abstract — The basic circuit solutions of operational amplifiers (Op-Amps), focused on the production of field effect transistors (FET) with integrated n-type channel and p-n-p transistors on a GaAs chip, are considered. A perspective three-cascade Op-Amp based on pHEMT (pseudo morphic high electron mobility transistor) and p-n-p

HBT (hetero junction bipolar transistor) in which small systematic components of input offset voltage caused by the influence of base currents of p-n-p transistors and its temperature and radiation variations are realized are proposed. Three variants of construction of input cascades are investigated, in which an increase by 1-2 orders of

magnitude of transconductance of amplification during pHEMT operation in microampere ranges of currents (10-100 $\mu A)$ is provided. A mathematical analysis of the recommended operational amplifier architecture on GaAs FETs and p-n-p transistors is given. The mathematical analysis of the main modifications of the input stages with a transconductance multiplier is described. The results of computer simulation of GaAs operational amplifier with increased gain using GaAs pHEMT and p-n-p HBT models are presented. The logarithmic amplitude-frequency response of the voltage gain of the proposed op-amp is studied.

Keywords — operational amplifier, GaAs pHEMT, GaAs pn-p HBT, input offset voltage, the transconductance of the differential cascade gain.

REFERENCES

- [1] Hibi Y. et al. Cryogenic ultra-low power dissipation operational amplifiers with GaAs JFETs //Cryogenics. – 2016. – T. 73. – C. 8-13
- [2] Fujiwara M., Sasaki M. Performance of GaAs JFET at a cryogenic temperature for application to readout circuit of high-impedance detectors //IEEE transactions on electron devices. – 2004. – T. 51. – №. 12. – C. 2042-2047
- [3] Fujiwara M., Sasaki M., Akiba M. Reduction method for low-frequency noise of GaAs junction field-effect transistor at a cryogenic temperature //Applied physics letters. – 2002. – T. 80. – №. 10. – C. 1844-1846
- [4] Shur M. S. GaAs devices and circuits. Springer Science & Business Media, 2013.
- [5] N. A. Kulchitsky, A. A. Naumov. V., Startsev V. V. Novye tendencii razvitiya rynka priborov na arsenide galliya (New tendencies of development of gallium arsenide devices market) // Proc. of Applied Physics. - 2020. - T. 8. - №. 2. p. 137. (in Russian)
- [6] J. Y. Yang, F. J. Morris, D. L. Plumton, and E. N. J. Jeffrey, "GaAs BIJFET technology for linear circuits," in Dig. 1989 GaAs IC Symp., pp. 341–344
- [7] F.J. Morris, D. L. Plumton, J.-Y. Yang, H.-T. Yuan, "Integrated circuit composed of group III-V compound field effect and bipolar semiconductors", US Patent 5.068.756, Nov. 26, 1991
- [8] D.L. Plumton, F. J. Morris, J.-Y. Yang, "Method to integrate HBTs and FETs", US Patent 5.077.231, Dec. 31, 1991

- [9] Brian Moser, W. Wohlmuth, S. Nedeljkovic, W. Clausen, D. Halchin, R. Vass, and M. Fresina, "An InGaP/GaAs HBT/JFET BiFET technology for PA bias circuit applications", CS MANTECH Conference, April 14-17, 2008, Chicago, Illinois, USA, pp.1-4
- [10] Dvornikov O.V., Pavlyuchik A.A., Prokopenko N.N., Chekhovsky V.A., Kunz A.V., Chumakov V.E. Arsenidgallievyj analogovyj bazovyj kristall (Arsenide Gallium Analog Base Crystal) // Problems of Advanced Micro- and Nanoelectronic Systems Development (MES). 2021. Issue 2. p. 47-54. doi:10.31114/2078-7707-2021-2-47-54 (in Russian)
- [11] O.V. Dvornikov, A.A. Pavlyuchik, N.N. Prokopenko, V.A. Chehovsky, A.V. Kuntz, V.E. Chumakov Unificirovannye skhemotekhnicheskie resheniya analogovyh arsenidgallievyh mikroskhem (Unified circuit solutions for analog arsenide-gallium microcircuits) // Proceedings of higher educational institutions. Electronics. Vol. 27. №4, 2022. (in Russian)
- [12] N.N. Prokopenko. Nelinejnaya aktivnaya korrekciya v precizionnyh analogovyh mikroskhemah: monografiya (Nonlinear Active Correction in Precision Analog Microcircuits: Monograph) / Rostov-on-Don: North Caucasus Research Center of Higher School, 2000. 222 p. (in Russian)
- [13] N. N. Prokopenko, V. E. Chumakov, I. V. Pakhomov, A. V. Bugakova, R. K. Khubiev and A. V. Avilov, "Circuit Design of CJFET OPA Based on the Differential Stage with a Slope Multiplier," 2021 29th Telecommunications Forum (TELFOR), 23-24 November 2021, Belgrade, Serbia, pp. 1-4, doi: 10.1109/TELFOR52709.2021.9653418 (CJFET OPA circuitry based on a differential cascade with a multiplier)
- [14] N. N. Prokopenko, V. E. Chumakov, I. V. Pakhomov, A. V. Bugakova, D. Y. Denisenko and I. L. Vialikov, "Gallium-Arsenide JFET Op-Amp with High Open-Loop Gain," 2021 29th Telecommunications Forum (TELFOR), 23-24 November 2021, Belgrade, Serbia, pp. 1-4, doi: 10.1109/TELFOR52709.2021.9653228 (Gallium-Arsenide JFET Op-Amp with increased open amplification)
- [15] Savchenko E.M., Prokopenko N.N., Chumakov V.E., Pronin A.A., Drozdov D.G. Arsenid-gallievyj differencial'nyj kaskad s umnozhitelem krutizny usileniya (Arsenide-gallium differential cascade with a gain steepness multiplier): Patent application No. 2022107168; applied for patent No. 2022107168. 17.03.2022 (1000v). (in Russian)