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Abstract — Building efficient FPGA-based AI inference 

accelerators sets new requirements for FPGA compilers. AI 

inference accelerator contains very large amount of very 

small identical circuits (such as low precision multipliers). 

So, in order to maximize the overall accelerator 

performance, it is very important to build those small 

circuits optimally (in terms of area and delay). SAT-based 

exact synthesis is known to be an efficient technique to build 

optimal LUT-based circuits for logic functions with a small 

number of inputs. 

In this paper we extend exact synthesis methods to support 

FPGA Adaptive Logic Module (ALM) structure. We present 

a SAT-based exact synthesis tool that builds optimal Stratix 

10 and Agilex ALM-based circuits. We use the tool to build 

optimal FPGA circuits for low-precision multipliers and 

demonstrate that the new circuits are 10-50% more area-

efficient if compared with circuits generated by Quartus 

Compiler. Furthermore, we demonstrate that our approach 

identified several new mappings with improved delay. To the 

best of our knowledge, this is the first application of exact 

synthesis realized on commercial FPGA architecture. 

Keywords — Exact synthesis, Agilex, Stratix 10, multipliers. 

I.  INTRODUCTION 

In the recent years there is a growing interest to use 
FPGAs for AI inference. For example, Microsoft has used 
FPGA to build their Brainwave AI service [1]-[2]. The key 
calculation that the Brainwave-like inference engines use 
FPGAs for is low-precision multiplication. Therefore, it is 
important to be able to implement low-precision 
multipliers in FPGA in the most optimal way. 

Quartus compiler significantly improved quality of 
multiplier synthesis with the recent introduction of Fractal 
synthesis [3]. 

But still a question remains whether low precision 
multipliers generated by Quartus are optimal. 

This paper answers that question by applying SAT-
based exact synthesis techniques [4]-[6] to FPGA 
synthesis. SAT-based exact synthesis solves synthesis 
problem by reformulating it as SAT problem and then 
applying efficient SAT/SMT solvers. It can build an 
optimal circuit and prove that a better circuit does not 
exist. 

The rest of this paper is organized as follows. In section II 
we provide an overview of exact synthesis technique. In 

section III we describe an architecture of FPGA ALM 
block and formulate practical ALM synthesis constraints. 
In section IV we formally describe ALM exact synthesis 
problem. In section V we introduce ExactS tool [7] that 
applies exact synthesis technique to generate an optimal 
ALM-based circuit for the given problem. In section VI we 
provide an overview of low-precision multiplier circuits 
generated with the help of ExactS. 

II. BACKGROUND 

A. Exact synthesis problem 

Let         and    is the  -th cartesian product of   
for any      . In this paper, we are interested in 
Boolean operators          that map   input truth 
values to   output truth values. Logic synthesis is the 
problem of finding an optimal circuit in a given class of 
circuits and for a given Boolean operator   with respect to 
selected optimality criterion (e.g., complexity or depth) or 
their combination. Sometimes logic synthesis is considered 
as constrained optimization problem, when specific 
optimality criterion is optimized with several other criteria 
constrained. 

Logic synthesis problem is known to be NP-hard. 
Consequently, practical logic synthesis problems are 
usually solved using heuristic algorithms and rarely 
guarantee optimal solutions. 

Exact synthesis aims at finding optimal solution of the 
given logic synthesis problem. The problem is considered 
solved, when optimal circuit is found, and we have proof 
that a circuit with better complexity parameters does not 
exist. Usually, exact synthesis is possible when a Boolean 
operator   has a very small number of inputs   and outputs 
 , or when a considered class of circuits has very strict 
constraints. 

B. Related work on Exact synthesis 

Exact synthesis algorithms typically fall into one of the 
following three categories [8]:  

1. algorithms based on functional decomposition [9]-
[12]; 

2. algorithms based on explicit [13]-[16] or implicit 
enumeration [4]-[5], [17]-[21]; 

3. hybrid approaches [8], [22]-[23].  
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In recent years, SAT-based exact logic synthesis 
became one of the dominant techniques. This approach is 
based on explicit enumeration and its main idea is to 
represent initial logic synthesis problem as a decision 
problem and then encode it as a SAT instance, which is 
solved by SAT or SMT solver. Popularity of this approach 
is dictated by both recent advance in SAT algorithms [18] 
and flexibility of the SAT encodings, which can be used to 
encode complex circuit types and constraints [24]. 

Significant part of recent results in exact synthesis is 
related to complexity classification of Boolean functions 
with small number of variables (typically, no more than 5) 
for different classes of circuits. Boolean circuits (some 
authors call them Boolean chains) [4]-[6], [15], [25] and 
different types of inverter graphs (subclasses of Boolean 
circuits) [26]-[30] attracted the most attention.  

Other classes, such as exclusive-or sum-of-products 
forms [31], were also considered. Exact synthesis was also 
applied to synthesis of specific Boolean operators [32]. 

Libraries of optimal circuits, which result from this 
classification, are used in different applications, such as 
logic synthesis [27] and Boolean matching [33]. These 
libraries are also used to improve theoretical complexity 
bounds for specific Boolean functions and operators [34]. 
Recently, research of other complexity measures began in 
the scope of exact synthesis. For example, exact synthesis 
of delay optimal circuits is considered in [35]-[36]. 

On the final note, exact synthesis research results in a 
number of different academic tools, such as ABC [37] 
(‘exact’, ‘twoexact’, ‘lutexact’, and ‘majexact’ 
commands), CirKit [38] and Percy [39], and libraries [40]. 

C. SAT-based exact synthesis 

The main idea of the SAT-based exact synthesis 
described in [6] is to reduce synthesis problem to Boolean 
satisfiability problem (SAT problem). As NP problem the 
synthesis problem can be efficiently reduced to NP-
complete SAT problem. The statement of the SAT problem 
is to find variable values for which given Boolean function 
is true or provide the proof that such set of values does not 
exist. Further we will give more details about rewriting 
synthesis problem to the SAT problem. 

Consider the logic network synthesis problem for 
certain   Boolean functions 
                          of   variables. Logic 
network is a directed, acyclic graph that consists of input 
nodes marked by variable names, output nodes, other 
nodes marked with symbols of logic gates, and edges 
which represent connections between nodes. 

To reduce the synthesis problem to the SAT problem 
we need to define some sets of variables and constraints 
between them. Initially we don't have a logic network, we 
have only input nodes, output nodes and a set of 
unconnected logic gates so their inputs and outputs are 
independent. Also, we haven't defined Boolean functions 
which are implemented in logic gates yet. The first set of 

variables   consist of    variables   
   

      
   

 for each 

input node, output node and inputs and outputs of the logic 

gates  . These variables represent truth tables of Boolean 
functions which are implemented at corresponding nodes. 
The second set of variables   defines Boolean functions 
for each logic gate in the network. Next, we introduce three 
kinds of constraints: 

1. Input and output constraints. Truth tables for   
network inputs and   network outputs should be 
equal to truth tables of corresponding input 
variables         and functions        . 

2. Connection constraints. Logic gates and outputs 
of the logic network should be connected to other 
gates or to inputs of the network. We also can 
restrict the set of available connection for each 
specific node. This type of constraints can be 
written as follows: 

     
   

   
             

   
   

      , 

where logic gate input or network output   can 
be connected to one of nodes        . 

3. Functionality constraints. For each logic gate in 
the network, we describe its functionality. For 
example, for AND gate with inputs  ,   and 
output   we get the following expression: 

      
   

     
        

      

 For logic gates with undefined Boolean 
functions, we also use variables from the set   in 
the constraint. 

All constraints that are described above form Boolean 
formula, which satisfies if and only if there is a logic 
network with given set of logic gates and connection 
restrictions that implements system of functions        . 
Moreover, if we have the solution of defined SAT 
problem, we can recover this network using values of 
variables from sets   and  . On the other hand, if SAT 
solver reports that the SAT problem does not have a 
solution it is a proof that desired logic network doesn't 
exist. 

III. STRATIX10 ALM STRUCTURE AND SYNTHESIS 

CONSTRAINTS 

In this paper we address exact synthesis problem for 
Intel Stratix 10 ALM-based circuits. To the best of our 
knowledge this is the first application of exact synthesis to 
commercial FPGA architecture. ALM is a basic Stratix 10 
FPGA building block [41]. It could be represented as a 
Boolean circuit with 9 inputs, 6 outputs, 11 basic logic 
gates, such as AND, OR, XOR, and MUX, and 4 LUT4-
blocks as shown on fig. 1. This ALM structure is derived 
from Stratix 10 architecture specification [41] and 
simulation models. There are 8 "primary" inputs (a, b, c0, 
d0, c1, d1, e, f) and 5 "primary" outputs (lut5out0, 
lut5out1, lut6out, sumout0, sumout1). All primary ports are 
connected to the routing fabric. There is also "carry-in" 
input (cin) and "carry-out" output (cout) not connected to 
the routing fabric. ALMs are grouped into 10-ALM chains 
in such a way that cin input of the first ALM in a chain is 
connected to 0, while cin of any other ALM is connected 
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to cout of the previous ALM. These chains are called 
FPGA logic array blocks (LABs). Since we consider only 
combinational circuits, ALM's registers and related routing 
is discarded. Furthermore, we add additional constraint, 
that no more than 4 out of 5 primary outputs can be used 
simultaneously, because Quartus Compiler appears to not 
able to route ALMs with all 5 outputs connected. We 
consider the block to have unit complexity and unit delay 
between any pair of primary input and output. Delay 
between cin and cout is very small and considered to be 
equal to zero in our model. 

 

Fig. 1. Internal structure of Stratix10 ALM block 

ALM is rather large circuit. For more precise 
complexity measurements it is convenient to define a 
smaller building block, which we call "half ALM". Half 
ALM (which is basically an extension of Stratix 10 
arithmetic LCELL primitive) is defined as an ALM where 
no more than 4 primary inputs (either a, c0, d0, e, or b, c1, 
d1, f) and two primary outputs (either lut5out0, sumout0, 
or lut5out1, sumout1) are used, and only two LUT4 blocks 
(either G0, P0, or G1, P1) are configured. It is possible to 
implement two half-ALMs within a single ALM. Half- 
ALM is modelled by imposing additional constraints on 
the ALM configuration. 

IV. PROBLEM STATEMENT 

In this section ALM-based exact synthesis problem is 
formulated. For a given Boolean operator 
               

     we seek to determine minimal 
number  , which allows to implement operator   (input 
and output inversions are allowed) using a chain of   
ALMs (the last element of the chain can be half-ALM).  

Following constraints are imposed on ALM's inputs and 
outputs: 

1. each ALM input can be connected to one of the 
primary inputs          , constants 0 or 1 or 
one of the ALM's outputs 

2. each ALM output can be connected to one of 
the primary outputs           or one of the 
ALM's inputs. 

Considered ALM-based circuit does not contain 

directed cycles (i.e. we consider purely combinational 

circuits). Furthermore, carry in port cin of the first ALM 

and carry out port of the last ALM in the chain should be 

connected to the constant 0. This additional constraint 

allows stacking of generated ALM-based circuits, which 

is needed in order to pack great number of identical 

circuits to FPGA. It should be noted, that for some 

Boolean operators value   may be greater than size of the 

LAB. In this case ALM-based circuit may be composed of 

several ALM chains, which are placed in nearby LABs.  

Using the technique described in section 2 we can 

reformulate this FPGA synthesis problem as SAT 

problem. Note that the difference between arbitrary logic 

network synthesis and FPGA synthesis is that a lot of 

logic gates are already connected and has predefined 

Boolean functions. It significantly simplifies synthesis 

problem so this exact synthesis method can be applied to 

functions of more than 4 or 5 variables and to bigger 

networks. 

V. IMPLEMENTATION 

We implemented FPGA exact synthesis tool that we 
called ExactS that solves the problem specified in section 4 
and is based on the approach described in section 2. The 
tool is written in Python and is using Z3 SMT Solver [42] 
under the hood. The tool takes a description of FPGA 
ALM architecture (also written in Python), and a circuit 
template in Verilog with custom hints and extensions 
describing the synthesis problem. The circuit template 
defines a system of functions to be implemented, as well as 
the circuit topology and configuration constraints. The 
output of ExactS is either a circuit, which implements the 
specified system of functions, or a proof of unsatisfiability 
(see fig. 2). 

 

Fig. 2. ExactS flow diagram 

VI. RESULTS 

We applied ExactS to generate low precision unsigned 

multipliers for Stratix10 and Agilex Intel FPGA 

architectures. We chose to focus on multipliers because  
those circuits are very important for FPGA AI 

inference accelerators and might have direct impact on 
accelerator throughput. But the tool setup can be easily 
modified for other Boolean operators. All the generated 
circuits were simulated and pushed through Quartus 
compiler to make sure these are legal circuits. Experiments 
show that ExactS works well for circuits with up to 6-8 
inputs, 6-8 outputs, and complexity up to 3-4 ALMs, but 
for bigger circuits we face very long runtimes because of 
exponentially growing complexity of the SAT problem. 
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Also, we noticed that proofs of unsatisfiability require 
orders of magnitude more time. 

Stratix 10 results are summarized in tab. 1 (Agilex 
results are very similar). "NxM" stands for unsigned 
multiplier with N-bit input A and M-bit input B (and 
N+M-bit output). Circuits generated by ExactS are 
compared with circuits generated by Quartus Compiler 
20.3. The data in the table demonstrates that the 
complexity of multipliers 2x2, 2x3, 2x4, 2x5, 2x6, 3x3 is 
10-50% better if compared with multipliers generated by 
Quartus. Also, for 3x3, 3x4, 3x5 multipliers we got circuits 
with better depth. Fig. 3 and fig. 4 demonstrate 2x2 and 
3x3 multipliers generated by ExactS. 

 

Fig. 3. 2x2 multiplier generated by ExactS 

Table 1 

Depth and complexity results for Stratix10 multipliers

 

 
Quartus SAT/SMT UNSAT Runtime 

Improvement 

complexity 

ALMs Depth ALMs Depth ALMs Depth SAT UNSAT  

2x2 2 1 1 1 — 1.5 s. — 50% 

2x3 2.5 1 2 1 1.5 1 1.9 s. 3.3 s. 20% 

2x4 3 1 
3 1 

2.5 1 
7 m. 25 s. 

11 m. 19 s. 17% 
2.5 2 8.2 s. 

2x5 3.5 1 
3.5 1 

3 1 
2 m. 27 s. 

2 h. 49 m. 14% 
3 2 45.7 s. 

2x6 4.5 1 4 1 3.5 1 1 m. 59 s. 8 h. 56 m. 11% 

3x3 4 2 
3.5 1 

3 1 
1 m. 12 s. 

2 h. 29 m. 
12.5% 

3 2 30 s. 25% 

3x4 5 2 7 1 — 15 m. 34 s. — — 

3x5 6 2 12 1 — 3 h. 57 m. — — 

  

 

Fig. 4.  3x3 multiplier generated by ExactS
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ExactS is also able to prove that a circuit with specific 
parameters doesn't exist (the UNSAT result). So, for some 
multipliers we proved that it's impossible to get a circuit 
with better complexity or depth. Thus, for 2x3, 2x4, 2x5, 
3x3 multipliers circuits with the optimal complexity and 
depth 1 were designed. 

The main limitation of the tool is that the runtime of a 
SAT solver grows exponentially with the number of inputs, 
and so for bigger multipliers (3x6, 4x4, 4x5 ...) the runs 
didn't finish (we set the runtime limit to one week). 

VII. FUTURE WORK 

In the future, it is planned to improve ExactS tool so 
that it can be used to generate optimal circuits for other 
Intel FPGA families (Arria 10, Stratix V, etc.) as well as 

for FPGAs from other vendors (Xilinx, Lattice, etc.). We 
are also working on ExactS runtime improvement to be 
able to deal with bigger circuits.  

VIII. CONCLUSION 

In this paper we apply Exact Synthesis technique to 
synthesize optimal circuits for Intel Stratix10 FPGA. We 
developed a tool that generates optimal FPGA circuits for 
logic functions with a small number of variables. We used 
the tool to build optimal circuits for several low-precision 
multipliers and proved their optimality. A number of 
circuits generated by our tool is smaller than the 
corresponding circuits generated by Quartus Compiler. Our 
results could be used to improve performance of FPGA-
based AI inference accelerators. 
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Аннотация — Создание эффективных ускорителей 

нейронных сетей на базе программируемых логических 

интегральных схем (ПЛИС) задает новые требования к 

компиляторам, работающим с ПЛИС. Ускорители 

нейронных сетей состоят из очень большого числа 

идентичных схем. Примером таких схем являются 

умножители малой точности. Именно поэтому, для того 

чтобы получить максимальную производительность 

необходимо строить эти небольшие схемы оптимальным 

образом. В данном случае оптимальность 

подразумевается с точки зрения размера синтезируемой 

схемы и ее задержки. Точный синтез, основанный на 

задаче ВЫПОЛНИМОСТЬ (англ. satisfiability, SAT) — 

известная и эффективная техника для построения 

оптимальных схем для функций алгебры логики с 

маленьким числом входов. 

В данной работе был применен метод точного синтеза к 

адаптивным логическим модулям (АЛМ) современных 

ПЛИС корпорации Intel. Для этого был разработан 

программный комплекс на базе SAT-решателя, который 

строит оптимальные схемы на основе АЛМ блоков 

архитектуры Stratix10 и Agilex. Применяя данный 

программный комплекс для синтеза оптимальных схем 

умножителей небольшой размерности, было показано, 

что новые схемы на 10–50% эффективнее с точки зрения 

размера по сравнению со схемами построенными 

Quartus Complier. Кроме того, в некоторых случаях 

удалось получить схемы, которые имеют меньшее 

значение задержки. В заключение отметим, что, 

насколько нам известно, в данной работе впервые 

методы точного синтеза были применены к 

архитектурам современных коммерческих ПЛИС. 

Ключевые слова — точный синтез, умножители, Agilex, 

Stratix 10. 
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