
MES-2022. Russia. Moscow, March-November 2022. © IPPM RAS
212

 DOI: 10.31114/2078-7707-2022-3-212-218

Exact Synthesis of Low Precision Multipliers for Intel FPGAs

Mikhail Shupletsov
1
, Vladimir Zhukov

1
, Sergey Gribok

2
, Ilya Ganusov

2
, Mikhail Mestetskiy

1
,

Mikhail Lopunov
1
, Ekaterina Kuprash

1

1
Lomonosov Moscow State University, Moscow, Russian Federation, shupletsov@cs.msu.ru

2
Intel Corporation, San Jose, USA, ilya.ganusov@intel.com

Abstract — Building efficient FPGA-based AI inference

accelerators sets new requirements for FPGA compilers. AI

inference accelerator contains very large amount of very

small identical circuits (such as low precision multipliers).

So, in order to maximize the overall accelerator

performance, it is very important to build those small

circuits optimally (in terms of area and delay). SAT-based

exact synthesis is known to be an efficient technique to build

optimal LUT-based circuits for logic functions with a small

number of inputs.

In this paper we extend exact synthesis methods to support

FPGA Adaptive Logic Module (ALM) structure. We present

a SAT-based exact synthesis tool that builds optimal Stratix

10 and Agilex ALM-based circuits. We use the tool to build

optimal FPGA circuits for low-precision multipliers and

demonstrate that the new circuits are 10-50% more area-

efficient if compared with circuits generated by Quartus

Compiler. Furthermore, we demonstrate that our approach

identified several new mappings with improved delay. To the

best of our knowledge, this is the first application of exact

synthesis realized on commercial FPGA architecture.

Keywords — Exact synthesis, Agilex, Stratix 10, multipliers.

I. INTRODUCTION

In the recent years there is a growing interest to use
FPGAs for AI inference. For example, Microsoft has used
FPGA to build their Brainwave AI service [1]-[2]. The key
calculation that the Brainwave-like inference engines use
FPGAs for is low-precision multiplication. Therefore, it is
important to be able to implement low-precision
multipliers in FPGA in the most optimal way.

Quartus compiler significantly improved quality of
multiplier synthesis with the recent introduction of Fractal
synthesis [3].

But still a question remains whether low precision
multipliers generated by Quartus are optimal.

This paper answers that question by applying SAT-
based exact synthesis techniques [4]-[6] to FPGA
synthesis. SAT-based exact synthesis solves synthesis
problem by reformulating it as SAT problem and then
applying efficient SAT/SMT solvers. It can build an
optimal circuit and prove that a better circuit does not
exist.

The rest of this paper is organized as follows. In section II
we provide an overview of exact synthesis technique. In

section III we describe an architecture of FPGA ALM
block and formulate practical ALM synthesis constraints.
In section IV we formally describe ALM exact synthesis
problem. In section V we introduce ExactS tool [7] that
applies exact synthesis technique to generate an optimal
ALM-based circuit for the given problem. In section VI we
provide an overview of low-precision multiplier circuits
generated with the help of ExactS.

II. BACKGROUND

A. Exact synthesis problem

Let and is the -th cartesian product of
for any . In this paper, we are interested in
Boolean operators that map input truth
values to output truth values. Logic synthesis is the
problem of finding an optimal circuit in a given class of
circuits and for a given Boolean operator with respect to
selected optimality criterion (e.g., complexity or depth) or
their combination. Sometimes logic synthesis is considered
as constrained optimization problem, when specific
optimality criterion is optimized with several other criteria
constrained.

Logic synthesis problem is known to be NP-hard.
Consequently, practical logic synthesis problems are
usually solved using heuristic algorithms and rarely
guarantee optimal solutions.

Exact synthesis aims at finding optimal solution of the
given logic synthesis problem. The problem is considered
solved, when optimal circuit is found, and we have proof
that a circuit with better complexity parameters does not
exist. Usually, exact synthesis is possible when a Boolean
operator has a very small number of inputs and outputs
 , or when a considered class of circuits has very strict
constraints.

B. Related work on Exact synthesis

Exact synthesis algorithms typically fall into one of the
following three categories [8]:

1. algorithms based on functional decomposition [9]-
[12];

2. algorithms based on explicit [13]-[16] or implicit
enumeration [4]-[5], [17]-[21];

3. hybrid approaches [8], [22]-[23].

213

In recent years, SAT-based exact logic synthesis
became one of the dominant techniques. This approach is
based on explicit enumeration and its main idea is to
represent initial logic synthesis problem as a decision
problem and then encode it as a SAT instance, which is
solved by SAT or SMT solver. Popularity of this approach
is dictated by both recent advance in SAT algorithms [18]
and flexibility of the SAT encodings, which can be used to
encode complex circuit types and constraints [24].

Significant part of recent results in exact synthesis is
related to complexity classification of Boolean functions
with small number of variables (typically, no more than 5)
for different classes of circuits. Boolean circuits (some
authors call them Boolean chains) [4]-[6], [15], [25] and
different types of inverter graphs (subclasses of Boolean
circuits) [26]-[30] attracted the most attention.

Other classes, such as exclusive-or sum-of-products
forms [31], were also considered. Exact synthesis was also
applied to synthesis of specific Boolean operators [32].

Libraries of optimal circuits, which result from this
classification, are used in different applications, such as
logic synthesis [27] and Boolean matching [33]. These
libraries are also used to improve theoretical complexity
bounds for specific Boolean functions and operators [34].
Recently, research of other complexity measures began in
the scope of exact synthesis. For example, exact synthesis
of delay optimal circuits is considered in [35]-[36].

On the final note, exact synthesis research results in a
number of different academic tools, such as ABC [37]
(‘exact’, ‘twoexact’, ‘lutexact’, and ‘majexact’
commands), CirKit [38] and Percy [39], and libraries [40].

C. SAT-based exact synthesis

The main idea of the SAT-based exact synthesis
described in [6] is to reduce synthesis problem to Boolean
satisfiability problem (SAT problem). As NP problem the
synthesis problem can be efficiently reduced to NP-
complete SAT problem. The statement of the SAT problem
is to find variable values for which given Boolean function
is true or provide the proof that such set of values does not
exist. Further we will give more details about rewriting
synthesis problem to the SAT problem.

Consider the logic network synthesis problem for
certain Boolean functions
 of variables. Logic
network is a directed, acyclic graph that consists of input
nodes marked by variable names, output nodes, other
nodes marked with symbols of logic gates, and edges
which represent connections between nodes.

To reduce the synthesis problem to the SAT problem
we need to define some sets of variables and constraints
between them. Initially we don't have a logic network, we
have only input nodes, output nodes and a set of
unconnected logic gates so their inputs and outputs are
independent. Also, we haven't defined Boolean functions
which are implemented in logic gates yet. The first set of

variables consist of variables

 for each

input node, output node and inputs and outputs of the logic

gates . These variables represent truth tables of Boolean
functions which are implemented at corresponding nodes.
The second set of variables defines Boolean functions
for each logic gate in the network. Next, we introduce three
kinds of constraints:

1. Input and output constraints. Truth tables for
network inputs and network outputs should be
equal to truth tables of corresponding input
variables and functions .

2. Connection constraints. Logic gates and outputs
of the logic network should be connected to other
gates or to inputs of the network. We also can
restrict the set of available connection for each
specific node. This type of constraints can be
written as follows:

 ,

where logic gate input or network output can
be connected to one of nodes .

3. Functionality constraints. For each logic gate in
the network, we describe its functionality. For
example, for AND gate with inputs , and
output we get the following expression:

 For logic gates with undefined Boolean
functions, we also use variables from the set in
the constraint.

All constraints that are described above form Boolean
formula, which satisfies if and only if there is a logic
network with given set of logic gates and connection
restrictions that implements system of functions .
Moreover, if we have the solution of defined SAT
problem, we can recover this network using values of
variables from sets and . On the other hand, if SAT
solver reports that the SAT problem does not have a
solution it is a proof that desired logic network doesn't
exist.

III. STRATIX10 ALM STRUCTURE AND SYNTHESIS

CONSTRAINTS

In this paper we address exact synthesis problem for
Intel Stratix 10 ALM-based circuits. To the best of our
knowledge this is the first application of exact synthesis to
commercial FPGA architecture. ALM is a basic Stratix 10
FPGA building block [41]. It could be represented as a
Boolean circuit with 9 inputs, 6 outputs, 11 basic logic
gates, such as AND, OR, XOR, and MUX, and 4 LUT4-
blocks as shown on fig. 1. This ALM structure is derived
from Stratix 10 architecture specification [41] and
simulation models. There are 8 "primary" inputs (a, b, c0,
d0, c1, d1, e, f) and 5 "primary" outputs (lut5out0,
lut5out1, lut6out, sumout0, sumout1). All primary ports are
connected to the routing fabric. There is also "carry-in"
input (cin) and "carry-out" output (cout) not connected to
the routing fabric. ALMs are grouped into 10-ALM chains
in such a way that cin input of the first ALM in a chain is
connected to 0, while cin of any other ALM is connected

214

to cout of the previous ALM. These chains are called
FPGA logic array blocks (LABs). Since we consider only
combinational circuits, ALM's registers and related routing
is discarded. Furthermore, we add additional constraint,
that no more than 4 out of 5 primary outputs can be used
simultaneously, because Quartus Compiler appears to not
able to route ALMs with all 5 outputs connected. We
consider the block to have unit complexity and unit delay
between any pair of primary input and output. Delay
between cin and cout is very small and considered to be
equal to zero in our model.

Fig. 1. Internal structure of Stratix10 ALM block

ALM is rather large circuit. For more precise
complexity measurements it is convenient to define a
smaller building block, which we call "half ALM". Half
ALM (which is basically an extension of Stratix 10
arithmetic LCELL primitive) is defined as an ALM where
no more than 4 primary inputs (either a, c0, d0, e, or b, c1,
d1, f) and two primary outputs (either lut5out0, sumout0,
or lut5out1, sumout1) are used, and only two LUT4 blocks
(either G0, P0, or G1, P1) are configured. It is possible to
implement two half-ALMs within a single ALM. Half-
ALM is modelled by imposing additional constraints on
the ALM configuration.

IV. PROBLEM STATEMENT

In this section ALM-based exact synthesis problem is
formulated. For a given Boolean operator

 we seek to determine minimal
number , which allows to implement operator (input
and output inversions are allowed) using a chain of
ALMs (the last element of the chain can be half-ALM).

Following constraints are imposed on ALM's inputs and
outputs:

1. each ALM input can be connected to one of the
primary inputs , constants 0 or 1 or
one of the ALM's outputs

2. each ALM output can be connected to one of
the primary outputs or one of the
ALM's inputs.

Considered ALM-based circuit does not contain

directed cycles (i.e. we consider purely combinational

circuits). Furthermore, carry in port cin of the first ALM

and carry out port of the last ALM in the chain should be

connected to the constant 0. This additional constraint

allows stacking of generated ALM-based circuits, which

is needed in order to pack great number of identical

circuits to FPGA. It should be noted, that for some

Boolean operators value may be greater than size of the

LAB. In this case ALM-based circuit may be composed of

several ALM chains, which are placed in nearby LABs.

Using the technique described in section 2 we can

reformulate this FPGA synthesis problem as SAT

problem. Note that the difference between arbitrary logic

network synthesis and FPGA synthesis is that a lot of

logic gates are already connected and has predefined

Boolean functions. It significantly simplifies synthesis

problem so this exact synthesis method can be applied to

functions of more than 4 or 5 variables and to bigger

networks.

V. IMPLEMENTATION

We implemented FPGA exact synthesis tool that we
called ExactS that solves the problem specified in section 4
and is based on the approach described in section 2. The
tool is written in Python and is using Z3 SMT Solver [42]
under the hood. The tool takes a description of FPGA
ALM architecture (also written in Python), and a circuit
template in Verilog with custom hints and extensions
describing the synthesis problem. The circuit template
defines a system of functions to be implemented, as well as
the circuit topology and configuration constraints. The
output of ExactS is either a circuit, which implements the
specified system of functions, or a proof of unsatisfiability
(see fig. 2).

Fig. 2. ExactS flow diagram

VI. RESULTS

We applied ExactS to generate low precision unsigned

multipliers for Stratix10 and Agilex Intel FPGA

architectures. We chose to focus on multipliers because
those circuits are very important for FPGA AI

inference accelerators and might have direct impact on
accelerator throughput. But the tool setup can be easily
modified for other Boolean operators. All the generated
circuits were simulated and pushed through Quartus
compiler to make sure these are legal circuits. Experiments
show that ExactS works well for circuits with up to 6-8
inputs, 6-8 outputs, and complexity up to 3-4 ALMs, but
for bigger circuits we face very long runtimes because of
exponentially growing complexity of the SAT problem.

215

Also, we noticed that proofs of unsatisfiability require
orders of magnitude more time.

Stratix 10 results are summarized in tab. 1 (Agilex
results are very similar). "NxM" stands for unsigned
multiplier with N-bit input A and M-bit input B (and
N+M-bit output). Circuits generated by ExactS are
compared with circuits generated by Quartus Compiler
20.3. The data in the table demonstrates that the
complexity of multipliers 2x2, 2x3, 2x4, 2x5, 2x6, 3x3 is
10-50% better if compared with multipliers generated by
Quartus. Also, for 3x3, 3x4, 3x5 multipliers we got circuits
with better depth. Fig. 3 and fig. 4 demonstrate 2x2 and
3x3 multipliers generated by ExactS.

Fig. 3. 2x2 multiplier generated by ExactS

Table 1

Depth and complexity results for Stratix10 multipliers

Quartus SAT/SMT UNSAT Runtime

Improvement

complexity

ALMs Depth ALMs Depth ALMs Depth SAT UNSAT

2x2 2 1 1 1 — 1.5 s. — 50%

2x3 2.5 1 2 1 1.5 1 1.9 s. 3.3 s. 20%

2x4 3 1
3 1

2.5 1
7 m. 25 s.

11 m. 19 s. 17%
2.5 2 8.2 s.

2x5 3.5 1
3.5 1

3 1
2 m. 27 s.

2 h. 49 m. 14%
3 2 45.7 s.

2x6 4.5 1 4 1 3.5 1 1 m. 59 s. 8 h. 56 m. 11%

3x3 4 2
3.5 1

3 1
1 m. 12 s.

2 h. 29 m.
12.5%

3 2 30 s. 25%

3x4 5 2 7 1 — 15 m. 34 s. — —

3x5 6 2 12 1 — 3 h. 57 m. — —

Fig. 4. 3x3 multiplier generated by ExactS

216

ExactS is also able to prove that a circuit with specific
parameters doesn't exist (the UNSAT result). So, for some
multipliers we proved that it's impossible to get a circuit
with better complexity or depth. Thus, for 2x3, 2x4, 2x5,
3x3 multipliers circuits with the optimal complexity and
depth 1 were designed.

The main limitation of the tool is that the runtime of a
SAT solver grows exponentially with the number of inputs,
and so for bigger multipliers (3x6, 4x4, 4x5 ...) the runs
didn't finish (we set the runtime limit to one week).

VII. FUTURE WORK

In the future, it is planned to improve ExactS tool so
that it can be used to generate optimal circuits for other
Intel FPGA families (Arria 10, Stratix V, etc.) as well as

for FPGAs from other vendors (Xilinx, Lattice, etc.). We
are also working on ExactS runtime improvement to be
able to deal with bigger circuits.

VIII. CONCLUSION

In this paper we apply Exact Synthesis technique to
synthesize optimal circuits for Intel Stratix10 FPGA. We
developed a tool that generates optimal FPGA circuits for
logic functions with a small number of variables. We used
the tool to build optimal circuits for several low-precision
multipliers and proved their optimality. A number of
circuits generated by our tool is smaller than the
corresponding circuits generated by Quartus Compiler. Our
results could be used to improve performance of FPGA-
based AI inference accelerators.

FUNDING

This work was supported by the Intel corporation.

REFERENCES

[1] Fowers J. et al. A configurable cloud-scale DNN processor
for real-time AI // 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture
(ISCA). – IEEE, 2018. – P. 1-14.

[2] Chung E. et al. Serving dnns in real time at datacenter scale
with project brainwave // IEEE Micro. – 2018. – V. 38. –
№. 2. – P. 8-20.

[3] Langhammer M., Baeckler G., Gribok S. Fractal synthesis:
Invited tutorial // Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays. – 2019. – P. 202-211.

[4] Kojevnikov A., Kulikov A. S., Yaroslavtsev G. Finding
efficient circuits using SAT-solvers // International
Conference on Theory and Applications of Satisfiability
Testing. – Springer, Berlin, Heidelberg, 2009. – P. 32-44.

[5] Knuth D. E. The art of computer programming, Volume 4,
Fascicle 6: Satisfiability. – Addison-Wesley Professional,
2015.

[6] Soeken M. et al. Practical exact synthesis // 2018 Design,
Automation & Test in Europe Conference & Exhibition
(DATE). – IEEE, 2018. – P. 309-314.

[7] ExactS FPGA Exact synthesis tool. [Online].
Available: https://mks2.cs.msu.ru/root/intel_altera

[8] Ernst E. A. Optimal combinational multi-level logic
synthesis. – University of Michigan, 2009.

[9] Karp R. M. et al. A computer program for the synthesis of
combinational switching circuits // 2nd Annual Symposium
on Switching Circuit Theory and Logical Design (SWCT
1961). – IEEE, 1961. – P. 182-194.

[10] Roth J. P., Karp R. M. Minimization over Boolean graphs //
IBM journal of Research and Development. – 1962. – V. 6.
– №. 2. – P. 227-238.

[11] Schneider P. R., Dietmeyer D. L. An algorithm for
synthesis of multiple-output combinational logic // IEEE
Transactions on Computers. – 1968. – V. 100. – №. 2. – P.
117-128.

[12] Lawler E. L. An approach to multilevel Boolean
minimization // Journal of the ACM (JACM). – 1964. – V.
11. – №. 3. – P. 283-295.

[13] Smith R. A. Minimal three-variable NOR and NAND logic
circuits // IEEE Transactions on Electronic Computers. –
1965. – №. 1. – P. 79-81.

[14] Drechsler R., Günther W. Exact circuit synthesis // In Int'l
Workshop on Logic Synth. – 1998.

[15] Knuth D. E. The art of computer programming, volume 4A:
combinatorial algorithms, part 1. – Pearson Education India,
2011.

[16] Hellerman L. A catalog of three-variable or-invert and and-
invert logical circuits // IEEE Transactions on Electronic
Computers. – 1963. – №. 3. – P. 198-223.

[17] Muroga S., Ibaraki T. Design of optimal switching networks
by integer programming // IEEE Transactions on
Computers. – 1972. – V. 100. – №. 6. – P. 573-582.

[18] Eén N. Practical SAT-a tutorial on applied satisfiability
solving // Slides of invited talk at FMCAD. – 2007.

[19] Baugh C. R., Ibaraki T., Muroga S. Results in Using
Gomory's All-Integer Integer Algorithm to Design
Optimum Logic Networks // Operations Research. – 1971. –
V. 19. – №. 4. – P. 1090-1096.

[20] Baugh C. R. et al. Optimal networks of NOR-OR gates for
functions of three variables // IEEE Transactions on
Computers. – 1972. – V. 100. – №. 2. – P. 153-160.

[21] Lai H. C. et al. Minimization of logic networks under a
generalized cost function // IEEE Transactions on
Computers. – 1976. – V. 100. – №. 9. – P. 893-907.

[22] Davidson E. S. An algorithm for NAND decomposition
under network constraints // IEEE Transactions on
Computers. – 1969. – V. 100. – №. 12. – P. 1098-1109.

[23] Culliney J. N. et al. Results of the synthesis of optimal
networks of AND and OR gates for four-variable switching
functions // IEEE Transactions on Computers. – 1979. – V.
28. – №. 01. – P. 76-85.

[24] Testa E. et al. Exact synthesis for logic synthesis
applications with complex constraints // Proceedings of the
26th International Workshop on Logic & Synthesis (IWLS).
– 2017. – №. CONF.

[25] Haaswijk W. et al. Classifying functions with exact
synthesis // 2017 IEEE 47th International Symposium on
Multiple-Valued Logic (ISMVL). – IEEE, 2017. – P. 272-
277.

[26] Soeken M. et al. Exact synthesis of majority-inverter graphs
and its applications // IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. – 2017. –
V. 36. – №. 11. – P. 1842-1855.

[27] Haaswijk W. et al. A novel basis for logic rewriting // 2017
22nd Asia and South Pacific Design Automation
Conference (ASP-DAC). – Ieee, 2017. – P. 151-156.

[28] Haaswijk W. et al. SAT based exact synthesis using DAG
topology families // 2018 55Th Acm/Esda/Ieee Design
Automation Conference (Dac). – IEEE, 2018. – P. 1-6.

217

[29] Chu Z. et al. Exact synthesis of boolean functions in
majority-of-five forms // 2019 IEEE International
Symposium on Circuits and Systems (ISCAS). – IEEE,
2019. – P. 1-5.

[30] Lozhkin S.A., Zizov V.S., Shupletsov M.S., Zhukov V.V.,
Khzmalian D.E., Belyankov O.O. On complexity of inverter
graphs for Boolean functions of small number of variables //
Problems of Perspective Micro- and Nanoelectronic
Systems Development - 2020. Issue 4. P. 95-102.
doi:10.31114/2078-7707-2020-4-95-102 (in Russian)

[31] Riener H. et al. Exact synthesis of ESOP forms // Advanced
boolean techniques. – Springer, Cham, 2020. – P. 177-194.

[32] Stoffelen K. Optimizing s-box implementations for several
criteria using SAT solvers // International Conference on
Fast Software Encryption. – Springer, Berlin, Heidelberg,
2016. – P. 140-160.

[33] Huang Z. et al. Fast Boolean matching based on NPN
classification // 2013 International Conference on Field-
Programmable Technology (FPT). – IEEE, 2013. – P. 310-
313.

[34] Kulikov A. S. Improving circuit size upper bounds using
sat-solvers // 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). – IEEE, 2018. – P. 305-
308.

[35] Amarú L. et al. Enabling exact delay synthesis // 2017
IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). – IEEE, 2017. – P. 352-359.

[36] Soeken M., De Micheli G., Mishchenko A. Busy man's
synthesis: Combinational delay optimization with SAT //
Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017. – Ieee, 2017. – P. 830-835.

[37] Brayton R., Mishchenko A. ABC: An academic industrial-
strength verification tool // International Conference on
Computer Aided Verification. – Springer, Berlin,
Heidelberg, 2010. – P. 24-40.

[38] M. Soeken, The CirKit toolkit. [Online]. Available:
https://github.com/msoeken/cirkit

[39] W. Haaswijk, The percy exact synthesis library. [Online].
Available: https://github.com/whaaswijk/percy

[40] Lozhkin S.A., Shupletsov M.S., Konovodov V.A., Danilov
B.R., Zhukov V.V., Bagrov N.Yu. Distributed system and
switching circuits optimization methods for Boolean
functions of small number of variables // Problems of
Perspective Micro- and Nanoelectronic Systems
Development - 2016. Proceedings / edited by A.
Stempkovsky, Moscow, IPPM RAS, 2016. Part 1. P. 40-47.
(in Russian)

[41] Intel Stratix 10 logic array blocks and adaptive logic
modules user guide. [Online]. Available:
https://www.intel.com/content/dam/
www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-
s10-lab.pdf

[42] The Z3 Theorem Prover. [Online]. Available:
https://github.com/Z3Prover/z3

Точный синтез умножителей малой точности для ПЛИС

корпорации Intel

М.С. Шуплецов
1
, В.В. Жуков

1
, С. Грибок

2
, И. Ганусов

2
, М.А. Местецкий

1
, М.А. Лопунов

1
,

Е.Д. Купраш
1

1
Московский Государственный Университет им. М.В. Ломоносова, г. Москва,

shupletsov@cs.msu.ru

2
Intel Corporation, Сан-Хосе, США, ilya.ganusov@intel.com

Аннотация — Создание эффективных ускорителей

нейронных сетей на базе программируемых логических

интегральных схем (ПЛИС) задает новые требования к

компиляторам, работающим с ПЛИС. Ускорители

нейронных сетей состоят из очень большого числа

идентичных схем. Примером таких схем являются

умножители малой точности. Именно поэтому, для того

чтобы получить максимальную производительность

необходимо строить эти небольшие схемы оптимальным

образом. В данном случае оптимальность

подразумевается с точки зрения размера синтезируемой

схемы и ее задержки. Точный синтез, основанный на

задаче ВЫПОЛНИМОСТЬ (англ. satisfiability, SAT) —

известная и эффективная техника для построения

оптимальных схем для функций алгебры логики с

маленьким числом входов.

В данной работе был применен метод точного синтеза к

адаптивным логическим модулям (АЛМ) современных

ПЛИС корпорации Intel. Для этого был разработан

программный комплекс на базе SAT-решателя, который

строит оптимальные схемы на основе АЛМ блоков

архитектуры Stratix10 и Agilex. Применяя данный

программный комплекс для синтеза оптимальных схем

умножителей небольшой размерности, было показано,

что новые схемы на 10–50% эффективнее с точки зрения

размера по сравнению со схемами построенными

Quartus Complier. Кроме того, в некоторых случаях

удалось получить схемы, которые имеют меньшее

значение задержки. В заключение отметим, что,

насколько нам известно, в данной работе впервые

методы точного синтеза были применены к

архитектурам современных коммерческих ПЛИС.

Ключевые слова — точный синтез, умножители, Agilex,

Stratix 10.

ЛИТЕРАТУРА

[1] Fowers J. et al. A configurable cloud-scale DNN processor
for real-time AI // 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture
(ISCA). – IEEE, 2018. – P. 1-14.

[2] Chung E. et al. Serving dnns in real time at datacenter scale
with project brainwave // iEEE Micro. – 2018. – V. 38. –
№. 2. – P. 8-20.

218

[3] Langhammer M., Baeckler G., Gribok S. Fractal synthesis:
Invited tutorial // Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays. – 2019. – P. 202-211.

[4] Kojevnikov A., Kulikov A. S., Yaroslavtsev G. Finding
efficient circuits using SAT-solvers // International
Conference on Theory and Applications of Satisfiability
Testing. – Springer, Berlin, Heidelberg, 2009. – P. 32-44.

[5] Knuth D. E. The art of computer programming, Volume 4,
Fascicle 6: Satisfiability. – Addison-Wesley Professional,
2015.

[6] Soeken M. et al. Practical exact synthesis // 2018 Design,
Automation & Test in Europe Conference & Exhibition
(DATE). – IEEE, 2018. – P. 309-314.

[7] ExactS FPGA Exact synthesis tool. [Online].
Available: https://mks2.cs.msu.ru/root/intel_altera

[8] Ernst E. A. Optimal combinational multi-level logic
synthesis. – University of Michigan, 2009.

[9] Karp R. M. et al. A computer program for the synthesis of
combinational switching circuits // 2nd Annual Symposium
on Switching Circuit Theory and Logical Design (SWCT
1961). – IEEE, 1961. – P. 182-194.

[10] Roth J. P., Karp R. M. Minimization over Boolean graphs //
IBM journal of Research and Development. – 1962. – V. 6.
– №. 2. – P. 227-238.

[11] Schneider P. R., Dietmeyer D. L. An algorithm for
synthesis of multiple-output combinational logic // IEEE
Transactions on Computers. – 1968. – V. 100. – №. 2. – P.
117-128.

[12] Lawler E. L. An approach to multilevel Boolean
minimization // Journal of the ACM (JACM). – 1964. – V.
11. – №. 3. – P. 283-295.

[13] Smith R. A. Minimal three-variable NOR and NAND logic
circuits // IEEE Transactions on Electronic Computers. –
1965. – №. 1. – P. 79-81.

[14] Drechsler R., Günther W. Exact circuit synthesis // In Int'l
Workshop on Logic Synth. – 1998.

[15] Knuth D. E. The art of computer programming, volume 4A:
combinatorial algorithms, part 1. – Pearson Education India,
2011.

[16] Hellerman L. A catalog of three-variable or-invert and and-
invert logical circuits // IEEE Transactions on Electronic
Computers. – 1963. – №. 3. – P. 198-223.

[17] Muroga S., Ibaraki T. Design of optimal switching networks
by integer programming // IEEE Transactions on
Computers. – 1972. – V. 100. – №. 6. – P. 573-582.

[18] Eén N. Practical SAT-a tutorial on applied satisfiability
solving // Slides of invited talk at FMCAD. – 2007.

[19] Baugh C. R., Ibaraki T., Muroga S. Results in Using
Gomory's All-Integer Integer Algorithm to Design
Optimum Logic Networks // Operations Research. – 1971. –
V. 19. – №. 4. – P. 1090-1096.

[20] Baugh C. R. et al. Optimal networks of NOR-OR gates for
functions of three variables // IEEE Transactions on
Computers. – 1972. – V. 100. – №. 2. – P. 153-160.

[21] Lai H. C. et al. Minimization of logic networks under a
generalized cost function // IEEE Transactions on
Computers. – 1976. – V. 100. – №. 9. – P. 893-907.

[22] Davidson E. S. An algorithm for NAND decomposition
under network constraints // IEEE Transactions on
Computers. – 1969. – V. 100. – №. 12. – P. 1098-1109.

[23] Culliney J. N. et al. Results of the synthesis of optimal
networks of AND and OR gates for four-variable switching
functions // IEEE Transactions on Computers. – 1979. – V.
28. – №. 01. – P. 76-85.

[24] Testa E. et al. Exact synthesis for logic synthesis
applications with complex constraints // Proceedings of the
26th International Workshop on Logic & Synthesis (IWLS).
– 2017. – №. CONF.

[25] Haaswijk W. et al. Classifying functions with exact
synthesis // 2017 IEEE 47th International Symposium on
Multiple-Valued Logic (ISMVL). – IEEE, 2017. – P. 272-
277.

[26] Soeken M. et al. Exact synthesis of majority-inverter graphs
and its applications // IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. – 2017. –
V. 36. – №. 11. – P. 1842-1855.

[27] Haaswijk W. et al. A novel basis for logic rewriting // 2017
22nd Asia and South Pacific Design Automation
Conference (ASP-DAC). – Ieee, 2017. – P. 151-156.

[28] Haaswijk W. et al. SAT based exact synthesis using DAG
topology families // 2018 55Th Acm/Esda/Ieee Design
Automation Conference (Dac). – IEEE, 2018. – P. 1-6.

[29] Chu Z. et al. Exact synthesis of boolean functions in
majority-of-five forms // 2019 IEEE International
Symposium on Circuits and Systems (ISCAS). – IEEE,
2019. – P. 1-5.

[30] Ложкин С.А., Зизов В.С., Шуплецов М.С., Жуков В.В.,
Хзмалян Д.Э., Белянков О.О. О сложности инверсных
графов, реализующих булевы функции от малого числа
переменных // Проблемы разработки перспективных
микро- и наноэлектронных систем (МЭС). 2020.
Выпуск 4. С. 95-102. doi:10.31114/2078-7707-2020-4-95-
102

[31] Riener H. et al. Exact synthesis of ESOP forms // Advanced
boolean techniques. – Springer, Cham, 2020. – P. 177-194.

[32] Stoffelen K. Optimizing s-box implementations for several
criteria using SAT solvers // International Conference on
Fast Software Encryption. – Springer, Berlin, Heidelberg,
2016. – P. 140-160.

[33] Huang Z. et al. Fast Boolean matching based on NPN
classification // 2013 International Conference on Field-
Programmable Technology (FPT). – IEEE, 2013. – P. 310-
313.

[34] Kulikov A. S. Improving circuit size upper bounds using
sat-solvers // 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). – IEEE, 2018. – P. 305-
308.

[35] Amarú L. et al. Enabling exact delay synthesis // 2017
IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). – IEEE, 2017. – P. 352-359.

[36] Soeken M., De Micheli G., Mishchenko A. Busy man's
synthesis: Combinational delay optimization with SAT //
Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017. – Ieee, 2017. – P. 830-835.

[37] Brayton R., Mishchenko A. ABC: An academic industrial-
strength verification tool // International Conference on
Computer Aided Verification. – Springer, Berlin,
Heidelberg, 2010. – P. 24-40.

[38] M. Soeken, The CirKit toolkit. [Online]. Available:
https://github.com/msoeken/cirkit

[39] W. Haaswijk, The percy exact synthesis library. [Online].
Available: https://github.com/whaaswijk/percy

[40] Ложкин С.А., Шуплецов М.С., Коноводов В.А.,
Данилов Б.Р., Жуков В.В., Багров Н.Ю. Распределенная
система и алгоритмы поиска минимальных и близких к
ним контактных схем для булевых функций от малого
числа переменных // Проблемы разработки
перспективных микро- и наноэлектронных систем
(МЭС). 2016. № 1. С. 40-47.

[41] Intel Stratix 10 logic array blocks and adaptive logic
modules user guide. [Online]. Available:
https://www.intel.com/content/dam/
www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-
s10-lab.pdf

[42] The Z3 Theorem Prover. [Online]. Available:
https://github.com/Z3Prover/z3

