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Abstract — Building efficient FPGA-based Al inference
accelerators sets new requirements for FPGA compilers. Al
inference accelerator contains very large amount of very
small identical circuits (such as low precision multipliers).
So, in order to maximize the overall accelerator
performance, it is very important to build those small
circuits optimally (in terms of area and delay). SAT-based
exact synthesis is known to be an efficient technique to build
optimal LUT-based circuits for logic functions with a small
number of inputs.

In this paper we extend exact synthesis methods to support
FPGA Adaptive Logic Module (ALM) structure. We present
a SAT-based exact synthesis tool that builds optimal Stratix
10 and Agilex ALM-based circuits. We use the tool to build
optimal FPGA circuits for low-precision multipliers and
demonstrate that the new circuits are 10-50% more area-
efficient if compared with circuits generated by Quartus
Compiler. Furthermore, we demonstrate that our approach
identified several new mappings with improved delay. To the
best of our knowledge, this is the first application of exact
synthesis realized on commercial FPGA architecture.
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I. INTRODUCTION

In the recent years there is a growing interest to use
FPGAs for Al inference. For example, Microsoft has used
FPGA to build their Brainwave Al service [1]-[2]. The key
calculation that the Brainwave-like inference engines use
FPGAs for is low-precision multiplication. Therefore, it is
important to be able to implement low-precision
multipliers in FPGA in the most optimal way.

Quartus compiler significantly improved quality of
multiplier synthesis with the recent introduction of Fractal
synthesis [3].

But still a question remains whether low precision
multipliers generated by Quartus are optimal.

This paper answers that question by applying SAT-
based exact synthesis techniques [4]-[6] to FPGA
synthesis. SAT-based exact synthesis solves synthesis
problem by reformulating it as SAT problem and then
applying efficient SAT/SMT solvers. It can build an
optimal circuit and prove that a better circuit does not
exist.

The rest of this paper is organized as follows. In section Il
we provide an overview of exact synthesis technique. In

section Il we describe an architecture of FPGA ALM
block and formulate practical ALM synthesis constraints.
In section IV we formally describe ALM exact synthesis
problem. In section V we introduce ExactS tool [7] that
applies exact synthesis technique to generate an optimal
ALM-based circuit for the given problem. In section VI we
provide an overview of low-precision multiplier circuits
generated with the help of ExactsS.

A.  Exact synthesis problem

Let B = {0, 1} and B is the k-th cartesian product of B
for any k,k > 1. In this paper, we are interested in
Boolean operators F : B — B™ that map n input truth
values to m output truth values. Logic synthesis is the
problem of finding an optimal circuit in a given class of
circuits and for a given Boolean operator F with respect to
selected optimality criterion (e.g., complexity or depth) or
their combination. Sometimes logic synthesis is considered
as constrained optimization problem, when specific
optimality criterion is optimized with several other criteria
constrained.

BACKGROUND

Logic synthesis problem is known to be NP-hard.
Consequently, practical logic synthesis problems are
usually solved using heuristic algorithms and rarely
guarantee optimal solutions.

Exact synthesis aims at finding optimal solution of the
given logic synthesis problem. The problem is considered
solved, when optimal circuit is found, and we have proof
that a circuit with better complexity parameters does not
exist. Usually, exact synthesis is possible when a Boolean
operator F has a very small number of inputs n and outputs
m, or when a considered class of circuits has very strict
constraints.

B. Related work on Exact synthesis

Exact synthesis algorithms typically fall into one of the
following three categories [8]:

1. algorithms based on functional decomposition [9]-
[12];

2. algorithms based on explicit [13]-[16] or implicit
enumeration [4]-[5], [17]-[21];

3. hybrid approaches [8], [22]-[23].

MES-2022. Russia. Moscow, March-November 2022. © IPPM RAS

212



In recent years, SAT-based exact logic synthesis
became one of the dominant techniques. This approach is
based on explicit enumeration and its main idea is to
represent initial logic synthesis problem as a decision
problem and then encode it as a SAT instance, which is
solved by SAT or SMT solver. Popularity of this approach
is dictated by both recent advance in SAT algorithms [18]
and flexibility of the SAT encodings, which can be used to
encode complex circuit types and constraints [24].

Significant part of recent results in exact synthesis is
related to complexity classification of Boolean functions
with small number of variables (typically, no more than 5)
for different classes of circuits. Boolean circuits (some
authors call them Boolean chains) [4]-[6], [15], [25] and
different types of inverter graphs (subclasses of Boolean
circuits) [26]-[30] attracted the most attention.

Other classes, such as exclusive-or sum-of-products
forms [31], were also considered. Exact synthesis was also
applied to synthesis of specific Boolean operators [32].

Libraries of optimal circuits, which result from this
classification, are used in different applications, such as
logic synthesis [27] and Boolean matching [33]. These
libraries are also used to improve theoretical complexity
bounds for specific Boolean functions and operators [34].
Recently, research of other complexity measures began in
the scope of exact synthesis. For example, exact synthesis
of delay optimal circuits is considered in [35]-[36].

On the final note, exact synthesis research results in a
number of different academic tools, such as ABC [37]

(‘exact’,  ‘twoexact’,  ‘lutexact’, and  ‘majexact’
commands), CirKit [38] and Percy [39], and libraries [40].

C. SAT-based exact synthesis

The main idea of the SAT-based exact synthesis
described in [6] is to reduce synthesis problem to Boolean
satisfiability problem (SAT problem). As NP problem the
synthesis problem can be efficiently reduced to NP-
complete SAT problem. The statement of the SAT problem
is to find variable values for which given Boolean function
is true or provide the proof that such set of values does not
exist. Further we will give more details about rewriting
synthesis problem to the SAT problem.

Consider the logic network synthesis problem for
certain m Boolean functions
fi0eq, e %), ey fin (X1, ..., %) Of m variables. Logic
network is a directed, acyclic graph that consists of input
nodes marked by variable names, output nodes, other
nodes marked with symbols of logic gates, and edges
which represent connections between nodes.

To reduce the synthesis problem to the SAT problem
we need to define some sets of variables and constraints
between them. Initially we don't have a logic network, we
have only input nodes, output nodes and a set of
unconnected logic gates so their inputs and outputs are
independent. Also, we haven't defined Boolean functions
which are implemented in logic gates yet. The first set of

variables V consist of 2" variables v{"”, ..., v}y’ for each

input node, output node and inputs and outputs of the logic

RN
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gates w. These variables represent truth tables of Boolean
functions which are implemented at corresponding nodes.
The second set of variables P defines Boolean functions
for each logic gate in the network. Next, we introduce three
kinds of constraints:

1. Input and output constraints. Truth tables for n
network inputs and m network outputs should be
equal to truth tables of corresponding input

variables x,, ..., x,, and functions £, ..., f.

Connection constraints. Logic gates and outputs
of the logic network should be connected to other
gates or to inputs of the network. We also can
restrict the set of available connection for each
specific node. This type of constraints can be
written as follows:

Vi (vi(w) = vi(ul)) V..V Vi (vi(W) = vi(uk)) :

where logic gate input or network output w can
be connected to one of nodes uy, ..., uy.

Functionality constraints. For each logic gate in
the network, we describe its functionality. For
example, for AND gate with inputs u, v and
output w we get the following expression:

vi(v™ = v™ & v®).

For logic gates with undefined Boolean
functions, we also use variables from the set P in
the constraint.

All constraints that are described above form Boolean
formula, which satisfies if and only if there is a logic
network with given set of logic gates and connection
restrictions that implements system of functions fi, ..., fn-
Moreover, if we have the solution of defined SAT
problem, we can recover this network using values of
variables from sets V and P. On the other hand, if SAT
solver reports that the SAT problem does not have a
solution it is a proof that desired logic network doesn't
exist.

I1l. STRATIX10 ALM STRUCTURE AND SYNTHESIS
CONSTRAINTS

In this paper we address exact synthesis problem for
Intel Stratix 10 ALM-based circuits. To the best of our
knowledge this is the first application of exact synthesis to
commercial FPGA architecture. ALM is a basic Stratix 10
FPGA building block [41]. It could be represented as a
Boolean circuit with 9 inputs, 6 outputs, 11 basic logic
gates, such as AND, OR, XOR, and MUX, and 4 LUT4-
blocks as shown on fig. 1. This ALM structure is derived
from Stratix 10 architecture specification [41] and
simulation models. There are 8 "primary" inputs (a, b, c0,
do, cl, di, e, f) and 5 "primary" outputs (lutSoutO,
lutSoutl, lut6out, sumoutO, sumoutl). All primary ports are
connected to the routing fabric. There is also "carry-in"
input (cin) and "carry-out" output (cout) not connected to
the routing fabric. ALMs are grouped into 10-ALM chains
in such a way that cin input of the first ALM in a chain is
connected to 0, while cin of any other ALM is connected



to cout of the previous ALM. These chains are called
FPGA logic array blocks (LABSs). Since we consider only
combinational circuits, ALM's registers and related routing
is discarded. Furthermore, we add additional constraint,
that no more than 4 out of 5 primary outputs can be used
simultaneously, because Quartus Compiler appears to not
able to route ALMs with all 5 outputs connected. We
consider the block to have unit complexity and unit delay
between any pair of primary input and output. Delay
between cin and cout is very small and considered to be
equal to zero in our model.

lutSoutl lut6out J lutSout0
I
cin
cout
sumoutl sumoutO

Fig. 1. Internal structure of Stratix10 ALM block

ALM is rather large circuit. For more precise
complexity measurements it is convenient to define a
smaller building block, which we call "half ALM". Half
ALM (which is basically an extension of Stratix 10
arithmetic LCELL primitive) is defined as an ALM where
no more than 4 primary inputs (either a, c0, d0, e, or b, c1,
di, f) and two primary outputs (either lutSout0, sumoutO,
or lut5outl, sumoutl) are used, and only two LUT4 blocks
(either GO, PO, or G1, P1) are configured. It is possible to
implement two half-ALMs within a single ALM. Half-
ALM is modelled by imposing additional constraints on
the ALM configuration.

IV. PROBLEM STATEMENT

In this section ALM-based exact synthesis problem is
formulated. For a given Boolean  operator
F(xq,...,x,): B™ — B™ we seek to determine minimal
number r, which allows to implement operator F (input
and output inversions are allowed) using a chain of r
ALMs (the last element of the chain can be half-ALM).

Following constraints are imposed on ALM's inputs and
outputs:

1. each ALM input can be connected to one of the
primary inputs xy,...,x,, constants 0 or 1 or
one of the ALM's outputs

2. each ALM output can be connected to one of

the primary outputs f,..
ALM's inputs.

., fm Or one of the
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Considered ALM-based circuit does not contain
directed cycles (i.e. we consider purely combinational
circuits). Furthermore, carry in port cin of the first ALM
and carry out port of the last ALM in the chain should be
connected to the constant 0. This additional constraint
allows stacking of generated ALM-based circuits, which
is needed in order to pack great number of identical
circuits to FPGA. It should be noted, that for some
Boolean operators value r may be greater than size of the
LAB. In this case ALM-based circuit may be composed of
several ALM chains, which are placed in nearby LABs.

Using the technique described in section 2 we can
reformulate this FPGA synthesis problem as SAT
problem. Note that the difference between arbitrary logic
network synthesis and FPGA synthesis is that a lot of
logic gates are already connected and has predefined
Boolean functions. It significantly simplifies synthesis
problem so this exact synthesis method can be applied to
functions of more than 4 or 5 variables and to bigger
networks.

V. IMPLEMENTATION

We implemented FPGA exact synthesis tool that we
called ExactS that solves the problem specified in section 4
and is based on the approach described in section 2. The
tool is written in Python and is using Z3 SMT Solver [42]
under the hood. The tool takes a description of FPGA
ALM architecture (also written in Python), and a circuit
template in Verilog with custom hints and extensions
describing the synthesis problem. The circuit template
defines a system of functions to be implemented, as well as
the circuit topology and configuration constraints. The
output of ExactS is either a circuit, which implements the
specified system of functions, or a proof of unsatisfiability
(see fig. 2).

Verilog circuit
template with
solver hints

Solution Verilog
circuit
or
UNSAT

ExactS

Fig. 2. ExactS flow diagram

ALM architecture
description

VI. RESULTS

We applied ExactS to generate low precision unsigned
multipliers for Stratix10 and Agilex Intel FPGA
architectures. We chose to focus on multipliers because

those circuits are very important for FPGA Al
inference accelerators and might have direct impact on
accelerator throughput. But the tool setup can be easily
modified for other Boolean operators. All the generated
circuits were simulated and pushed through Quartus
compiler to make sure these are legal circuits. Experiments
show that ExactS works well for circuits with up to 6-8
inputs, 6-8 outputs, and complexity up to 3-4 ALMs, but
for bigger circuits we face very long runtimes because of
exponentially growing complexity of the SAT problem.



Also, we noticed that proofs of unsatisfiability require

X : 0 by ap a1 b1 ap by 1 0
orders of magnitude more time. ' e e © & ©
Stratix 10 results are summarized in tab. 1 (Agilex T T T T T T T T
results are very similar). "NxM" stands for unsigned f dlcl b a dO c0 e
multiplier with N-bit input A and M-bit input B (and
N+M-bit output). Circuits generated by ExactS are 0888 | | OFFF | | 6ACO| | 7FFF
compared with circuits generated by Quartus Compiler .
20.3. The data in the table demonstrates that the cout cin
complexity of multipliers 2x2, 2x3, 2x4, 2x5, 2x6, 3x3 is
10-50% better if compared with multipliers generated by \}.@ OO
Quiartus. Also, for 3x3, 3x4, 3x5 multipliers we got circuits \\}{o 5\)3“ \\}&b \\3{9 6\\;@0
with better depth. Fig. 3 and fig. 4 demonstrate 2x2 and
3x3 multipliers generated by ExactS. i l l l
£, ~f fi ~f3
Fig. 3. 2x2 multiplier generated by ExactS
Table 1
Depth and complexity results for Stratix10 multipliers
Quartus SAT/SMT UNSAT Runtime Improvement
complexity
ALMs | Depth | ALMs | Depth | ALMs | Depth SAT UNSAT
2x2 2 1 1 1 — 15s. — 50%
2x3 2.5 1 2 1 15 1 1.9s. 3.3s. 20%
3 1 7m. 25s
__________ [ A S Sty 0,
2x4 3 1 25 7, 2.5 1 855 11m. 19s. 17%
35 ¢ 1 2m. 27s
_________ . IR A A 0,
2x5 35 1 37T 3 1 i57s 2h.49m. 14%
2x6 4.5 1 4 1 35 1 1m.59s 8 h.56 m. 11%
3.5 1 1m.12s 12.5%
3x3 4 2 TS 3 R 0s 2h.29m. IR A
3x4 5 2 7 1 — 15m. 34s. — —
3x5 6 2 12 1 — 3h.57m. — —
-
b2 b] az bo bo dz di b1 do bz bz 0 daz b[] dp b1 ai b(} dg 0
RERR RERRRREANNARRERAAN
f dicl b a docO e f dicit b a doco e f dicl b a d0cO e
0000 | | c880 | | 4F54 | [6C1D 4E8B | | 66C6 | | 6E84 | | 5A22 D2E2 | | 8848 | | 58B8 | | F8CO
cout cinf—1—cout cin|—{cout cin
\ &0 X ’(,Q \' X, \{Q ’(,Q
0\} e R o RGPy ov 00 O™ ¢ g o
et | 5\3“\ W™ ]| e et
0 fs £ f3 f2 fo fi

Fig. 4. 3x3 multiplier generated by ExactS
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ExactS is also able to prove that a circuit with specific
parameters doesn't exist (the UNSAT result). So, for some
multipliers we proved that it's impossible to get a circuit
with better complexity or depth. Thus, for 2x3, 2x4, 2x5,
3x3 multipliers circuits with the optimal complexity and
depth 1 were designed.

The main limitation of the tool is that the runtime of a
SAT solver grows exponentially with the number of inputs,
and so for bigger multipliers (3x6, 4x4, 4x5 ...) the runs
didn't finish (we set the runtime limit to one week).

VII. FUTURE WORK

In the future, it is planned to improve ExactS tool so
that it can be used to generate optimal circuits for other
Intel FPGA families (Arria 10, Stratix V, etc.) as well as
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Annomayusn Co3nanue 3¢ ¢eKTUBHBIX YCKOpHTeNei
HeHpPOHHBIX ceTell Ha 0a3e MPOrpaMMHUpPYyeMbIX JOTHYeCKHX
uHTerpanbHbix cxem (IJIUC) 3axaeT HOBbIE TPeOOBaHUS K
komnuiasTopaMm, padoraromum ¢ IIVIMC. Yckopurenau
HEHPOHHBIX ceTell COCTOSAT M3 O4YeHb OO0JBLLIOT0 YHCIA
WAEHTHYHBIX cxeM. IlpuMepomM TakHMX cXeM SIBJISIOTCS
YMHOKHTeJH Majoii TouHocTH. UMeHHO mo3ToMy, AJIsl TOro
4YT00bl MOTYYHTh MAKCHMAJBHYI0 NPOH3BOAHTEILHOCTH
He00X0IUMO CTPOUTH 3TH HeGOJIbIIIHNe CXeMbl ONTHMAIbHBIM
obpa3zom. B JAHHOM cayuae ONTUMAIBHOCTH
MOAPa3syMeBaeTcsl ¢ TOYKM 3PEHHsl pazMepa CHHTEe3MpyeMoii
cxeMbl M ee 3ajep:KkH. To4HBIN CHHTe3, OCHOBAHHBI Ha
3agaye BBIIIOJTHUMOCTD (aura. satisfiability, SAT) —
u3BecTHass M J(deKTUBHAS TeXHMKA JJsi TOCTPOEHUs!
ONTHMAJBHBIX CXeM /Il (YHKUUH aaredpbl JIOTHKH C
MaJIeHbKHM YHCJI0M BXOJ0B.

B nannoii pabote 0bL1 MPHMMeHEH METO TOYHOIO0 CMHTe3a K
aZanTUBHBIM JIOTHYecKHM MoayasiMm (AJIM) coBpeMeHHBIX
IUVINC xopnopauuu Intel. Ins 3Toro 6bl1 paspadoraH
NMPOrpaMMHBIIi KOMILTeKe Ha 6a3e SAT-pemarensi, KOTOPBIit
CTPOMT ONTHMAJbHbIe cXeMbl Ha ocHoBe AJIM G6JiokoB
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apxurektypnl Stratix10 u Agilex. TIpumensis xaHHBII
NMPOrPaMMHBIH KOMILTEKC /UISl CHHTe3a ONTHMAJIBHBIX CXeM
YMHOKHUTeJIeil HeGoIbIIoH pa3sMepHOCTH, ObLIO MOKAa3aHO,
4To HOBBIe cxeMbl Ha 10-50% 3¢pekTHBHEE € TOUKH 3peHUS
pasMepa N0 CPaBHEHHI0 CO CXeMaMH MOCTPOCHHBIMH
Quartus Complier. Kpome TOro, B HeKOTOPbBIX CJIy4asix
yaajgoch MNOIYYHThb CXeMbl, KOTOpPble HMeIOT MeHbIlee
3HaYeHHe 3aJep:KKH. B  3akiloueHHe OTMeTHM, 4TO,
HACKOJbKO HAaM W3BeCTHO, B JaHHOW pa0oTe BHepBble
MeTOABl  TOYHOTO CHHTe3a OBbUIM  TNPHMEHEHBI K
apXUTEKTypaM coBpeMeHHbIX komMepueckux IIJIUC.

Knrwouesvle cnosa — touHblii cHHTE3, YMHOXUTENMH, Agilex,
Stratix 10.
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