DOI: 10.31114/2078-7707-2022-4-79-86

Modified Generalized Approach to Circuit Optimization
A.M. Zemliak
Autonomous University of Puebla, Mexico, Puebla

National Technical University of Ukraine, Ukraine, Kiev, azemliak@mail.ru

Abstract — The solution to the problem of circuit
optimization is obtained on the basis of a combination of a
genetic algorithm (GA) and the idea of generalized
optimization, developed earlier for the deterministic case. It
is shown that such a GA modification allows one to overcome
premature convergence to local minima and to increase the
minimization accuracy by several orders of magnitude. In
this case, GA forms a set of populations determined by the
fitness function, given in different ways, depending on the
strategy chosen within the framework of the idea of
generalized optimization. The way of setting fitness functions
as well as the length and structure of chromosomes, are
determined by a control vector artificially introduced within
the framework of generalized optimization. This vector
determines the number of independent variables of the
optimization problem and the method for calculating the
fitness function. It allows you to build compound strategies
that significantly increase the accuracy of the resulting
solution. This, in turn, makes it possible to reduce the
number of generations required during the operation of the
GA and minimize the processor time for solving the problem
of circuit optimization.

Keywords — generalized optimization, GA, circuit

optimization, control vector, set of strategies.

. INTRODUCTION

One of the major challenges in designing a large
system is the excessive computing time required to reach
the optimum point in the design process. This problem is
important as it has many applications, for example, in the
design of VLSI circuits. The design process starts with an
initial approximation that is provided by analysis of circuit
for the initial point and then the process is continued till
adjusting of the system parameters to obtain the necessary
performance features defined in the specification. The
process of setting parameters is usually based on the
optimization procedure. So, the process of design-by-
analysis can be realized instead of the difficult problem of
synthesis of a complex system. Mathematically, this
process is defined as the minimization of a special
objective function that includes necessary properties of the
designed circuit. It means that any circuit design strategy
includes two main blocks: analysis of the mathematical
model of the circuit and an optimization procedure that
reaches the minimum point of the objective function. The
minimum value of this function can ensure that the

required circuit characteristics are obtained. The
interaction of the circuit analysis block and the
optimization procedure block forms the circuit

optimization process. Optimization methods for systems of

various natures can be divided into two main groups:
deterministic optimization algorithms and stochastic search
algorithms. Some of the weaknesses of classical
deterministic optimization algorithms are the requirement
for a good starting point in the parameter space, the
difficulty of finding the global minimum, and a long
execution time. To overcome these problems some special
methods were developed, for example,a method that
determines initial point of the optimization process by
centering [1], geometric programming methods [2] that
guarantee the convergence to a global minimum; but, on
the other hand, this requires a special formulation of the
design equations to which additional difficulties
accompany. Another approach that achieves a satisfactory
solution is based on the idea of space mapping technique
[3-4].

Some alternative stochastic search algorithms,
especially evolutionary computation algorithms, can solve
the problem of finding the global minimum and have been
developed in recent years. An analysis of various
stochastic algorithms for system optimization allowed
selecting some groups: simulated annealing method [5-7],
evolutionary computing techniques that produce some
different approaches as evolutionary algorithms [8-11]
particle swarm optimization (PSO) method, GA,
differential evolution, genetic programming. A PSO
technique [12] is one of the evolutionary algorithms that
competes with genetic algorithms.

Separately, we highlight GA that is used to solve
nonlinear programming problems both for optimizing
systems of various nature [13-14], and, in particular, for
optimizing and designing electronic systems [15-16]. GA
has been used as an optimization procedure for analog
circuits due to the ability to find a satisfactory solution.
The disadvantages of these methods include premature
convergence to a local minimum and an increase in
computer operation time when setting a sufficiently high
accuracy for obtaining the minimum. To prevent this, we
propose to use the approach underlying the generalized
optimization method defined for the deterministic case of
circuit optimization in [17]. In this formulation of the
problem, an artificially introduced control vector produces
many different optimization strategies and sets a different
type of the objective function for each new strategy.

This control vector is introduced into the system of
equations describing the optimization process of a certain
function, determines the structure of these equations and
leads to the emergence of many different optimization
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strategies that differ in the number of operations and CPU
time. The set of different strategies that appear in this case
depends on the dimension of the control vector, which, in
turn, is determined by the number of circuit nodes. At the
same time, this dependence is exponential, i.e. if the
number of circuit nodes is M, then the number of different
optimization strategies is 2". With this approach, each
strategy is determined by its objective function, which
depends on the structure of the control vector. In this case,
the optimization process is generalized and, in fact, is a
dynamic controlled system with a control vector as
principal element.

A detailed analysis of various optimization strategies in
the deterministic case showed the prospects and
advantages of this approach when solving the problem of
reducing the time spent on the optimization and design of
electronic systems. It would like to find out the validity of
this approach when solving optimization problems by
stochastic methods. In this paper, the approach of
generalized  optimization is included into the
implementation of a standard GA. This means that one of
the most important steps is the setting of the GA fitness
function, which now includes the control vector.

Il.  GA AND GENERALIZED OPTIMIZATION APPROACH

The process of circuit optimization can be defined as
the problem of minimization of objective function C(X),
X eR"M with additional conditions. It is supposed that the
minimum of the objective function C(X) corresponds to
achievement of all the necessary design goals of the circuit,
and the system of constraints is a mathematical model of
the electronic circuit.

A typical formulation of a circuit optimization problem
can be defined mathematically as a constrained
optimization problem for the objective function C(X). The
process of minimizing the objective function C(X) is
conventionally defined by the following equation:

X =A(X®),s=12,.. @)
where A is the operator of transition from iteration s to
iteration s+1. The constraints are determined by the circuit
equations and can be described by a system of nonlinear
equations:

g;(X)=0,j=12...M (2)

We will declare some of the variables as independent,
and the other part as dependent, the value of which is
determined from the constraint equations (2): X = (X', X "),
X' e R is a vector of independent variables, X " € R is a
vector of dependent variables, K is the number of
independent variables, M is the number of the circuit’s
dependent variables, N is the total number of variables
(N=K+M). Traditionally, resistance (conductivity) of
resistors are defined as independent variables of
optimization procedure (vector X'). Other variables are
defined as dependent variables (currents or nodal voltages).
However, this partition is conditional, since any variable
may be considered independent or dependent.
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To calculate the function C(X), it is required to solve a
system of nonlinear equations (2) at each step of the
optimization process. This approach can be named as
traditional strategy of optimization (TSO).

Let us accept the following statement that there is no
need to fulfil condition (2) at each step of the optimization
procedure, and that it is enough to fulfil it at the final point
of the optimization process. We use the approach [17]
leading to a generalization of the optimization process.
Let’s define as independent all the variables included in the
vector X", that were previously declared dependent. In this
case, the constraint equations (2) can be removed, but to
fulfill all the constraints (2), at least at the end point of the
optimization process, we introduce a new, generalized,
objective function F(X), which can be defined as follows:

F(X) =C(X)+o(X) (€)

where @(X) is an additional penalty function, the equality
of which to zero, at the end point of the optimization
process, ensures the fulfilment of conditions (2). This
function can be, for example, the following form:

P(X) =2 g7 (X). @

Generalizing this approach, it is possible to declare
independent only a part of the previously dependent
variables, for example, Z variables, where Z€[0, M]. In this
case, Z equations are removed from system (2), and the
formula (4) contains Z terms. This approach generalizes
the optimization problem by introducing a special control
vector U=(uy, U,,..., Uy), that changes the structure of all
equations and formulas of the optimization procedure. In
this case, system (2) is transformed into the following:

(1—uj)gj(X):O,j=:L2,...,M ®)

where u; is the jth component of the control vector
U=(u1, up,..., upg), u; € Q, Q={0;1}. Formulas (3) and (4)
are transformed into the following:

F(X,U)=C(X) +(X,U) ©)
P(X,0) =1 u,07(x) ™
o=

where o is a special adjusting parameter.

Thus, the control vector U allows one to change both
the structure of the basic equations of the constraints (5)
and the form of the generalized objective function F(X,U).
Zero values of components of the vector U determine the
TSO. In this case, the system (2) is solved at each step of
the optimization procedure, and the generalized objective
function F(X,U) coincides with the function C(X). Further,
the penalty function ¢@(X,U) is equal to zero. If some
components of the vector U are equal to 1, then the
corresponding equations disappear from system (5), but
information about them appears in the penalty function and
in the function F(X,U). If all components of the vector U
are equal to 1, then the optimization is determined by the



modified traditional strategy (MTS). This means that
system (5) disappears, and the penalty function includes
complete information about system (5).

It is also important to note the necessary changes in the
optimization procedure. When using the deterministic
approach, the optimization procedure is specified by
differential (8) or difference (9) equations:

dx;
dt

®)

= f.(X,U),i=12,...N,

XS+1:XS+tSHS, (9)
where f(X,U) or H are determined by a specific
optimization method. A change in the components of the
control vector U from 0 to 1 corresponds to a
transformation of the corresponding dependent component
of the vector X into an independent one, leading to a
change in the number of independent variables and the
number of equations both in the optimization procedure (8)
or (9) and in the system of constraints (5). The control
vector U defines 2" strategies of the structural basis of
generalized optimization. Equations (5)-(9) define a set of
different strategies, each of which is determined by the
corresponding value of the control vector. In this case, as
was shown in [18], there are opportunities for a significant
acceleration of the optimization process due to the different
trajectories of different strategies and the combination of
these strategies in the process of optimization.

Let us consider the application of the idea of
generalized optimization in the case of using a GA as the
main optimization procedure. Instead of using equation (8)
or (9), the optimization procedure was carried out on the
basis of a GA. Let us consider the classic version of GA
[19], in which the selection of chromosomes is carried out
by a tournament method and two main genetic operators
are used: crossover and mutation. Variants with one-, two-,
and four-point crossover operators with a probability of
0.95 and mutation operators with a probability of 0.05 to
0.1 were analyzed. Let's define NN as the number of
chromosomes in a population, and X is a special matrix
with N rows and NN columns, provided that each column
corresponds to a specific value of the vector X.

Let's define the fitness function according to the
following generalized formula:
P(X,U)=1/F(X,U) (10)
Taking into account the concepts of generalized
optimization, the structure of GA can be represented in
Fig. 1. A new element of this algorithm is the control
vector U, which provides the implementation of various
GA variants with different objective functions (fitness
functions in GA terminology). Thus, the fitness function
also depends on the vector U. The presence of the control
vector U is reflected in the corresponding blocks of
diagram and ensures the determination and change of the
structure of both the initial generation of chromosomes and
the current generations during the algorithm.
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Fig. 1. Modified GA flowchart

For the analyzed examples, the length of chromosomes
(L) in GA varied from 20 to 80 for each of the variables,
and the number of chromosomes (NN) in the population
varied from 40 to 400 depending on the length of the
chromosomes.

I1l.  RESULTS

A. Example 1
We need to optimize the nonlinear circuit in Fig. 2.
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Fig. 2. Two-node nonlinear passive circuit

Consider a simple nonlinear voltage divider circuit. A
nonlinear element has the following dependency:
yn=a+h(V;-V,)°. The admittances y;, y,, Ys are positive and
compose a set of independent circuit parameters (K=3).
The node voltages Vi, V, are the dependent parameters
(M=2). Vector X consists of the following five
COMPONeNts: (X1, Xz, X3, Xa, Xs): X2 =1, Xo° =Y2, Xa* =Y, Xa
=V, X5 =V,. By defining the components Xx;, X, X3 using the
above formulas, we can automatically obtain positive
values of the conductance, which eliminates the issue of
positive definiteness for each conductance and allows us to
perform optimization in the full space of the values of
these variables without any restrictions.

The model of this circuit includes two equations
corresponding to Kirchhoff’s laws. The objective function



C(XZ) is determined by the formula C(X)=(xs-my)*+((Xs-Xs)-
m,)°, where m; and m, are predetermined values of the
divider voltages. This circuit is characterised by two (M=2)
dependent parameters (x4, Xs), and three (K=3) independent
parameters (X;, X, X3). The control vector has the next
structure: U=(uy, up). The structural basis of the various
strategies includes four strategies with the following
control vectors: (00), (01), (10), and (11). The mathematic
model of the circuit is determined by the next equations:

g,(X)=(- )(4))(12 -(x, —x5)(a+b(x4 _Xs)z) _X4X§ =0
(15)

9,(X) =(x, —%;)@+b(x, - X5)2) - X5X§ =0

It is from the solution of system (15) that the values of
the dependent variables x,, x5 can be determined and then
the value of the objective function C(X) can be calculated.
In the case of the transformation of the two dependent
variables x,, Xs (or at least one of them) into independent
ones, it is necessary to form a generalized objective
function F(X,U) according to the following formula:

F(X,U)=C(X) + (u,97(X) +u,g%(X)) /5. (16)

Consider the optimization problem for the circuit
shown in Fig. 2. Leta=1, b =1, m;=0.2, and m,=0.25. For
the example analyzed, the length L of the chromosomes
varied from 20 to 80 for each of the five variables, and the
number NN of chromosomes in the population varied from
60 to 320. Variable limits are specified in a normalized
form; for variables X1, X,, X3, they were set from 10° to 2.0,
and for variables x,, x5 from 10 to 1.0. Matrix X has five
rows (N =5) and NN columns.

It is important to note that the required accuracy of
minimizing the objective function F(X,U) has a significant
impact on the optimization process and its characteristics.
Each of the four strategies has its own convergence
accuracy. Table 1 shows the results reflecting the potential
accuracy ¢ of the optimization process that each strategy
can achieve and the number of generations required to
obtain a solution with precision & = 10-5.

Table 1

Potential accuracy e and number of generations

| P ol Number of

N %22:2? otentia generations

accuracy € for 8 :10_5

1 (00) 1.69-10° No solution

2 (01) 2.04-10° No solution
3 (10) 6.05-10° 77

4 1) 2.87-10° No solution

Table 1 reveals that for an error of 1.6-10° or less in
obtaining the solution, only one of the strategies, namely
strategy (10), will allow solving the problem. In this case,
77 generations are required. Other strategies, including the
traditional strategy (00), cannot find solutions for any
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number of steps in the optimization procedure. It is
possible to propose the structure of a composite strategy
consisting of two, three, or more different strategies. In this
case, it is important to obtain the optimal position of the
switching points from one strategy to another. Table 2
shows the results of some composite strategies with
optimal switching point Sp that can significantly improve
the accuracy of solving the problem. This table contains
data for six composite strategies, each of which consists of
two strategies in Table 1. As can be seen, the accuracy of
the solution was improved by 2 to 3 orders of magnitude.

However, the results presented in Table 2 show that
complex strategies allow solving the problem with much
more stringent requirements for the accuracy of the
solution obtained.

Table 2

Potential accuracy ¢ and number of generations for
complex single switching point strategies

N Control Sp € Number of generations G for
vector various precision &
10° | 10° | 107 | 10°
1 | 0)©0) | 13 3'9% 31 35 44 51
107
2 (10) (00) 2 3.94 32 38 44 49
108
3 (11) (00) 8 3.94 31 38 44 57
-10°®
4 | ©0)(01) | 20 107 34 46 62
5 | 00(0) | 16 | 675 | 35 57 -
107
6 00)(11) | 20 | 7.22 44 72 -
107

This table provides data on the potential accuracy
achievable for various compound strategies at the optimum
position of switching point. The results of the optimization
process are also presented in the form of the required
number of GA populations at which the required accuracy
o is achieved. Some composite strategies can solve the
problem up to 10® accuracy.

Fig. 3 shows the dependence of the minimized function
F on the number of generations G for three strategies
corresponding to three variants of calculating the fitness
function for precision 8 = 10-6. These dependences are
plotted for two scales - large (Fig. 3(a)) and small, which
corresponds to the inner region of the ellipse in the first
figure (Fig. 3(b)). The composite strategy includes two
strategies (01) and (00) with the switching point between
them Sp=13. Simple strategies (00) and (11) do not
achieve the required accuracy & = 10-6, but the composite
strategy solves the problem in 35 generations.
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Fig. 3. Minimized function F for strategies (00), (11) and
(01)(00) on the number of generations G

The obtained result shows that the change in the
structure of the fitness function in the course of the
optimization algorithm allows us to bypass local minima
and overcome premature convergence. Such an
improvement in the accuracy of the solution leads to a
significant reduction in the number of GA generations
needed to obtain the required accuracy.

B. Example 2

Let's analyze the optimization process of the nonlinear
circuit shown in Fig. 4.

The conductivities yi, Y., y3 are positive and compose
the set of non-dependent parameters of the circuit (K=3).
Nodal voltages Vi, V,, V3 for nodes 1, 2 and 3 are the
dependent parameters (M=3). Let's define a vector of
variables X € R®, including six components (Xy, X, X3, X4, Xs,
XG): X12 =Y1, X22 =Y2, X32 =Y3, X4 =V1, X5 :Vz, X6 =V3. A static
Ebers-Moll model of transistor was used [20].

The objective function C(X) of the optimization process was
determined as the sum of the squares of the differences between
the previously specified and current values of the nodal voltages:
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C(X)=i(XK+i _Vio)z (17

where Vi,V20,V30 are the before-defined values of nodal
voltages.

Fig. 4. Single-stage amplifier
The circuit model is defined by Kirchhoff's law as:

gl(X)E I _(Eo _X4)X12 =0
9,(X)=1c —x¢x; =0

95(X)=1lc = (B, =% )x; =0
where Iy, Iz, Ic — are the base, emitter and collector
currents, respectively. This system serves as a system of
constraints for minimizing the objective function C(X). The
control vector includes three components U=(uy,us,us).
Using the generalized approach, we transform system (18)
into system (19).

(-u,)g;(X)=0.123. (19)

The generalized objective function is defined by the
following formula:

(18)

F(X,U):C(X)Jriiujgf(X) (20)
O j=1

Table 3 shows the number of generations required to
achieve the minimum of the function F with accuracy & for
three strategies. The first two are TSO with control vector
U = (0,0,0) and MTS with control vector U = (1,1,1). The
third strategy is a combined strategy defined by the control
vector (000)(111) with one switching point Sp = 9.

That is, the first nine iterations correspond to the
traditional strategy (000), and the next ones correspond to
the strategy (111). It can be seen that when using the
traditional strategy, the required number of generations is
much larger than in the case of the modified traditional
strategy and the combined strategy to achieve the same
accuracy.

In addition, the traditional strategy does not provide a
good accuracy of achieving the minimum of the objective
function. When the required error is 10 or less, no
solution based on the traditional strategy is found. At the
same time, the modified strategy (111) and the combined
strategy, consisting of two strategies (000) and (111), find
a solution with an accuracy of 5-10™. Note that the



combined strategy finds a solution to the problem in a

significantly fewer generations.

Table 3

Number of generations G for strategies (000), (111) and
(000)(111) for different precision 6

Control Control Control
Precision vector vector vector
(000) (111) (000)(111)

Sp=9
10 137 36 27
10° 20706 47 32
1073 348514 63 38
10* - 77 42
10” - 88 49
10° - 102 59
10”7 - 109 69
10° - 123 76
107 - 144 89
107 - 172 99
5-10™ - 210 108

10-11 _ _ _

It can be seen that the gain in the number of iterations
(number of generations) for the combined strategy and
MTS is three to four orders of magnitude compared to the
traditional one, if the traditional strategy as a whole is able
to find a solution. The reduction in CPU time is even
greater, since the time of one iteration of the modified
strategy is much less than the traditional one.

It is clear that the final result of the combined strategy
depends on the switching point from one strategy to
another. Table 4 shows the dependence of the number of
generations on the switching point for predetermined error
& =107. It can be seen that the switching point significantly
affects the number of generations required to achieve the
necessary accuracy. The minimum value for this combined
strategy corresponds to the switching point Sp = 9.

Table 4

Number of generations G for combined strategy
(000)(111) for different switching points Sp

Control
vector
(000), 213|489 ]10|11]12
(111)
G 67 |56 | 96 | 53 | 49 | 52 | 99 | 57

Table 5 contains information for the three considered
strategies, summarizing their comparative characteristics
when achieving an accuracy of 10? and 107 for the
minimized objective function. The numerical values of the
number of generations, the CPU time of all strategies, as
well as the comparative gain for the MTS and for the
combined strategy, both in the number of generations and
in the CPU time compared to TSO, are given. Note that
TSO does not allow finding a solution to the problem with
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the required error less than 10-3. It can be seen that both
the MTS and the combined strategy provide a large gain

over TSO.

Table 5

Generalized comparative characteristics for three

different strategies

Precision | Control (000) (111) | (000)(111)

0 vector Sp=9
Number of | 5750 | 47 3
generations

102 Gain in the
number of 440 647
generations
(Csf U time | 10815 | 0266 | 0244
Time gain 4429 4828
Number of | 3,054 | 43 38
generations

107 Gain in the
number of 5532 9171
generations
gl))U Hme | 905182 | 0353 | 0276
Time gain 58124 74340

With an error of 102, the gain in terms of the number
of generations is more than two orders of magnitude, and
in terms of CPU time, more than three orders of
magnitude. With a given error of 10, the gain in terms of
the number of generations is 3-4 orders of magnitude, and
in terms of computing time, it is almost five orders of
magnitude.

The information presented in this table is the main
practical result of the work. It can be stated that the use of
a generalized approach that changes the structure of the
vector of basic variables X and the shape of the fitness
function makes it possible to overcome the problem of the
GA's premature convergence to a local minimum. In this
case new strategies appear that can substantially increase
the accuracy of solving the problem and significantly speed
up the optimization procedure.
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Fig. 5. Minimized function F for strategies (000), (111) and
(000)(111) on the number of generations G



Fig. 5 shows the dependence of the function F to be
minimized on the number of generations G for the three
strategies (000), (111) and combines strategy (000)(111) at
a given accuracy of 10°.

Traditional strategy of optimization cannot find a
solution to the problem with the required accuracy. On the
contrary, it is obvious that the modified traditional strategy
and the combined strategy find a solution to the task rather
quickly. Thus, we can conclude that new optimization
strategies that appear within the framework of the
presented generalized approach have good prospects for
improving the optimization process of electronic circuits.

V. CONCLUSIONS

A generalized approach in terms of control theory to
solving the problem of optimizing electronic circuits using
deterministic optimization methods was developed earlier.
The obtained algorithms have shown high efficiency in
comparison with the traditional approach in terms of both
accuracy and speed.

This paper demonstrates the possibility of embedding
the idea of generalized optimization into the body of
stochastic optimization methods. It was shown that this
approach can be built into GA, which leads to the
formation of a set of different optimization strategies and
a significant improvement in the main characteristics of
GA.

The studied examples demonstrate the practical
implementation of a modified GA based on a generalized
approach for solving the problem of optimizing electronic
circuits. The emerging new optimization strategies make it
possible to increase the accuracy of the problem solution
by several orders of magnitude. It should also be
emphasized that the real gain of these strategies in CPU
time compared to the traditional approach is much higher
than the gain in the number of GA populations. This is due
to the fact that the processor time for evaluating the fitness
function for new strategies is much less than in the
traditional case.
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MoaudunrpoBaHHBIM 0000IIEHHBIN MTOAX0 K ONITUMHU3AIIUN CXEM
A M. 3emisak

ABToHOMHBIH yHUBepcuTteT I1y>0:1a, Mekcuka, [1ys6na

HarnroHanbHbIH TeXHUYECKUI YHUBEPCUTET YKpauHsbl, Ykpanna, Kues, azemliak@mail-ru

Annomayus — Pemenue 3aiayd ONTHMM3AIUHM CXeMbI
NMOJIy4eHO Ha  OCHOBe KOMOMHAIMM TeHeTHYeCKOro
agroputMa (CA) u wugen 0000LIEHHONW ONTHMHU3ALMU,
pa3pa0oTaHHOl paHee JJIsi 1€TePMUHMPOBAHHOIO CJy4as.
Iloka3ano, uto Takas moauduxkauuss I['A mno3Bosasier
Npeoao/eTh NMpesKIeBPeMeHHYI0 CXOAUMOCTh K JIOKAJIBHBIM
MHHHMYMaM U HAa HECKOJILKO IOPSAKOB MOBBICUTH TOYHOCTH
MHHUMU3aUUM. B 3Tom ciaydae I'A ¢opmupyeT MHOKeCTBO
NONmyJsiNuii, ompeaejsieMbIX (UTHec-(pYHKIMEH, 3aJaHHOM
N0-pa3sHOMY, B 3aBHCHMOCTH OT CTpaTerud, BbIOPAHHOI B
pamkax ujaen 00o0menHol ontumu3zanuu. Crnocod 3aganus
(uTHec-pyHKIMIA, a Takike JJIMHA U CTPYKTYpPa XpPOMOCOM
ONpeaesIIOTCS MCKYCCTBEHHO BBEJIEHHBIM YNPABJISIOMINM
BEKTOPOM B paMKax o0000IIeHHOii onTUMH3aUMH. JTOT
BEKTOP ompe/eisieT KOJHYECTBO He3aBUCUMBIX MepeMeHHbIX
3aJa4d  ONTHMM3aLMM M MeTOd BbluHMcjJeHusi ¢uTHec-
¢pynknuu. OH NM03BOJIAET CTPOMTH COCTABHBIC CTPATeruu,
3HAYUTEJbHO MOBBIIIAKOIIHE TOYHOCTH  IOJIYy4YaeMoro
pemieHusi. JTO, B CBOI0 O4Yepedb, MO3BOJIsAET YMEHBLIUUTH
KOJIM4eCTBO reHepauuii, HeoOXoauMbIx npu padore I'A, u
MHHHMH3HPOBATH NMPOLECCOPHOE BpeMsl HA pellieHue 3a1a4u
ONTUMM3ALMH CXEMBI.

Kntouesvie cnosa — o000mennass ontumuzauus, A,
ONTUMM3ALMS  CXeMbl, BEKTOp YyIpaBJjieHuUs, Hadop
cTpaTeruii.
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