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Abstract — The solution to the problem of circuit 

optimization is obtained on the basis of a combination of a 

genetic algorithm (GA) and the idea of generalized 

optimization, developed earlier for the deterministic case. It 

is shown that such a GA modification allows one to overcome 

premature convergence to local minima and to increase the 

minimization accuracy by several orders of magnitude. In 

this case, GA forms a set of populations determined by the 

fitness function, given in different ways, depending on the 

strategy chosen within the framework of the idea of 

generalized optimization. The way of setting fitness functions 

as well as the length and structure of chromosomes, are 

determined by a control vector artificially introduced within 

the framework of generalized optimization. This vector 

determines the number of independent variables of the 

optimization problem and the method for calculating the 

fitness function. It allows you to build compound strategies 

that significantly increase the accuracy of the resulting 

solution. This, in turn, makes it possible to reduce the 

number of generations required during the operation of the 

GA and minimize the processor time for solving the problem 

of circuit optimization. 

Keywords — generalized optimization, GA, circuit 

optimization, control vector, set of strategies. 

I.  INTRODUCTION 

One of the major challenges in designing a large 
system is the excessive computing time required to reach 
the optimum point in the design process. This problem is 
important as it has many applications, for example, in the 
design of VLSI circuits. The design process starts with an 
initial approximation that is provided by analysis of circuit 
for the initial point and then the process is continued till 
adjusting of the system parameters to obtain the necessary 
performance features defined in the specification. The 
process of setting parameters is usually based on the 
optimization procedure. So, the process of design-by-
analysis can be realized instead of the difficult problem of 
synthesis of a complex system. Mathematically, this 
process is defined as the minimization of a special 
objective function that includes necessary properties of the 
designed circuit. It means that any circuit design strategy 
includes two main blocks: analysis of the mathematical 
model of the circuit and an optimization procedure that 
reaches the minimum point of the objective function. The 
minimum value of this function can ensure that the 
required circuit characteristics are obtained. The 
interaction of the circuit analysis block and the 
optimization procedure block forms the circuit 
optimization process. Optimization methods for systems of 

various natures can be divided into two main groups: 
deterministic optimization algorithms and stochastic search 
algorithms. Some of the weaknesses of classical 
deterministic optimization algorithms are the requirement 
for a good starting point in the parameter space, the 
difficulty of finding the global minimum, and a long 
execution time. To overcome these problems some special 
methods were developed, for example, a method that 
determines initial point of the optimization process by 
centering [1], geometric programming methods [2] that 
guarantee the convergence to a global minimum; but, on 
the other hand,  this requires a special formulation of the 
design equations to which additional difficulties 
accompany. Another approach that achieves a satisfactory 
solution is based on the idea of space mapping technique 
[3-4]. 

Some alternative stochastic search algorithms, 
especially evolutionary computation algorithms, can solve 
the problem of finding the global minimum and have been 
developed in recent years. An analysis of various 
stochastic algorithms for system optimization allowed 
selecting some groups: simulated annealing method [5-7], 
evolutionary computing techniques that produce some 
different approaches as evolutionary algorithms [8-11] 
particle swarm optimization (PSO) method, GA, 
differential evolution, genetic programming. A PSO 
technique [12] is one of the evolutionary algorithms that 
competes with genetic algorithms. 

Separately, we highlight GA that is used to solve 
nonlinear programming problems both for optimizing 
systems of various nature [13-14], and, in particular, for 
optimizing and designing electronic systems [15-16]. GA 
has been used as an optimization procedure for analog 
circuits due to the ability to find a satisfactory solution. 
The disadvantages of these methods include premature 
convergence to a local minimum and an increase in 
computer operation time when setting a sufficiently high 
accuracy for obtaining the minimum. To prevent this, we 
propose to use the approach underlying the generalized 
optimization method defined for the deterministic case of 
circuit optimization in [17]. In this formulation of the 
problem, an artificially introduced control vector produces 
many different optimization strategies and sets a different 
type of the objective function for each new strategy. 

This control vector is introduced into the system of 
equations describing the optimization process of a certain 
function, determines the structure of these equations and 
leads to the emergence of many different optimization 
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strategies that differ in the number of operations and CPU 
time. The set of different strategies that appear in this case 
depends on the dimension of the control vector, which, in 
turn, is determined by the number of circuit nodes. At the 
same time, this dependence is exponential, i.e. if the 
number of circuit nodes is M, then the number of different 
optimization strategies is 2

M
. With this approach, each 

strategy is determined by its objective function, which 
depends on the structure of the control vector. In this case, 
the optimization process is generalized and, in fact, is a 
dynamic controlled system with a control vector as 
principal element. 

A detailed analysis of various optimization strategies in 
the deterministic case showed the prospects and 
advantages of this approach when solving the problem of 
reducing the time spent on the optimization and design of 
electronic systems. It would like to find out the validity of 
this approach when solving optimization problems by 
stochastic methods. In this paper, the approach of 
generalized optimization is included into the 
implementation of a standard GA. This means that one of 
the most important steps is the setting of the GA fitness 
function, which now includes the control vector. 

II. GA AND GENERALIZED OPTIMIZATION APPROACH 

The process of circuit optimization can be defined as 
the problem of minimization of objective function C(X), 

NRX   with additional conditions. It is supposed that the 
minimum of the objective function C(X) corresponds to 
achievement of all the necessary design goals of the circuit, 
and the system of constraints is a mathematical model of 
the electronic circuit. 

A typical formulation of a circuit optimization problem 
can be defined mathematically as a constrained 
optimization problem for the objective function C(X). The 
process of minimizing the objective function C(X) is 
conventionally defined by the following equation:  

 ,...2,1),(1  sXX ss  (1) 

where Λ is the operator of transition from iteration s to 
iteration s+1. The constraints are determined by the circuit 
equations and can be described by a system of nonlinear 
equations: 

 MjXg j ,...,2,1,0)(   (2) 

We will declare some of the variables as independent, 
and the other part as dependent, the value of which is 
determined from the constraint equations (2): X = (X ', X "), 
X ' ϵ RK

  is a vector of independent variables, X " ϵ RM
 is a 

vector of dependent variables, K is the number of 
independent variables, М is the number of the circuit’s 
dependent variables, N is the total number of variables 
(N=K+M). Traditionally, resistance (conductivity) of 
resistors are defined as independent variables of 
optimization procedure (vector X  ). Other variables are 
defined as dependent variables (currents or nodal voltages). 
However, this partition is conditional, since any variable 
may be considered independent or dependent.  

To calculate the function C(X), it is required to solve a 
system of nonlinear equations (2) at each step of the 
optimization process. This approach can be named as 
traditional strategy of optimization (TSO). 

Let us accept the following statement that there is no 
need to fulfil condition (2) at each step of the optimization 
procedure, and that it is enough to fulfil it at the final point 
of the optimization process. We use the approach [17] 
leading to a generalization of the optimization process. 
Let’s define as independent all the variables included in the 
vector X", that were previously declared dependent. In this 
case, the constraint equations (2) can be removed, but to 
fulfill all the constraints (2), at least at the end point of the 
optimization process, we introduce a new, generalized, 
objective function F(X), which can be defined as follows: 

 )()()( XXCXF   (3) 

where φ(X) is an additional penalty function, the equality 
of which to zero, at the end point of the optimization 
process, ensures the fulfilment of conditions (2). This 
function can be, for example, the following form: 

 ).()(
1

2 XgX
M

j

j


  (4) 

Generalizing this approach, it is possible to declare 

independent only a part of the previously dependent 

variables, for example, Z variables, where Zϵ[0, M]. In this 

case, Z equations are removed from system (2), and the 

formula (4) contains Z terms. This approach generalizes 

the optimization problem by introducing a special control 

vector U=(u1, u2,…, uM), that changes the structure of all 

equations and formulas of the optimization procedure. In 

this case, system (2) is transformed into the following: 

 MjXgu jj ,...,2,1,0)()1(   (5) 

where uj is the jth component of the control vector            
U=(u1, u2,…, uM), uj ϵ Ω, Ω={0;1}. Formulas (3) and (4) 
are transformed into the following: 

 ),()(),( UXXCUXF   (6) 
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where σ is a special adjusting parameter. 

Thus, the control vector U allows one to change both 
the structure of the basic equations of the constraints (5) 
and the form of the generalized objective function F(X,U). 
Zero values of components of the vector U determine the 
TSO. In this case, the system (2) is solved at each step of 
the optimization procedure, and the generalized objective 
function F(X,U) coincides with the function C(X). Further, 
the penalty function φ(X,U) is equal to zero. If some 
components of the vector U are equal to 1, then the 
corresponding equations disappear from system (5), but 
information about them appears in the penalty function and 
in the function F(X,U). If all components of the vector U 
are equal to 1, then the optimization is determined by the 



81 

 

modified traditional strategy (MTS). This means that 
system (5) disappears, and the penalty function includes 
complete information about system (5). 

It is also important to note the necessary changes in the 
optimization procedure. When using the deterministic 
approach, the optimization procedure is specified by 
differential (8) or difference (9) equations: 

 ,,...,2,1),,( NiUXf
dt

dx
i

i   (8) 

 s

s

ss HtXX 1 , (9) 

where fi(X,U) or H are determined by a specific 
optimization method. A change in the components of the 
control vector U from 0 to 1 corresponds to a 
transformation of the corresponding dependent component 
of the vector X into an independent one, leading to a 
change in the number of independent variables and the 
number of equations both in the optimization procedure (8) 
or (9) and in the system of constraints (5). The control 
vector U defines 2

M
 strategies of the structural basis of 

generalized optimization. Equations (5)-(9) define a set of 
different strategies, each of which is determined by the 
corresponding value of the control vector. In this case, as 
was shown in [18], there are opportunities for a significant 
acceleration of the optimization process due to the different 
trajectories of different strategies and the combination of 
these strategies in the process of optimization. 

Let us consider the application of the idea of 
generalized optimization in the case of using a GA as the 
main optimization procedure. Instead of using equation (8) 
or (9), the optimization procedure was carried out on the 
basis of a GA. Let us consider the classic version of GA 
[19], in which the selection of chromosomes is carried out 
by a tournament method and two main genetic operators 
are used: crossover and mutation. Variants with one-, two-, 
and four-point crossover operators with a probability of 
0.95 and mutation operators with a probability of 0.05 to 
0.1 were analyzed. Let's define NN as the number of 
chromosomes in a population, and X is a special matrix 
with N rows and NN columns, provided that each column 
corresponds to a specific value of the vector X. 

Let's define the fitness function according to the 
following generalized formula: 

    UFUP ,/1, XX   (10) 

Taking into account the concepts of generalized 
optimization, the structure of GA can be represented in 
Fig. 1. A new element of this algorithm is the control 
vector U, which provides the implementation of various 
GA variants with different objective functions (fitness 
functions in GA terminology). Thus, the fitness function 
also depends on the vector U. The presence of the control 
vector U is reflected in the corresponding blocks of 
diagram and ensures the determination and change of the 
structure of both the initial generation of chromosomes and 
the current generations during the algorithm. 

 

 
 

Fig. 1.  Modified GA flowchart 

For the analyzed examples, the length of chromosomes 
(L) in GA varied from 20 to 80 for each of the variables, 
and the number of chromosomes (NN) in the population 
varied from 40 to 400 depending on the length of the 
chromosomes. 

III. RESULTS 

A. Example 1 

We need to optimize the nonlinear circuit in Fig. 2.  

 

 

Fig. 2.  Two-node nonlinear passive circuit 

Consider a simple nonlinear voltage divider circuit. A 
nonlinear element has the following dependency: 
yn=a+b(V1-V2)

2
. The admittances y1, y2, y3 are positive and 

compose a set of independent circuit parameters (K=3). 
The node voltages V1, V2 are the dependent parameters 
(M=2). Vector X consists of the following five 
components: (x1, x2, x3, x4, x5): x1

2
 =y1, x2

2
 =y2, x3

2
 =y3, x4 

=V1, x5 =V2. By defining the components x1, x2, x3 using the 
above formulas, we can automatically obtain positive 
values of the conductance, which eliminates the issue of 
positive definiteness for each conductance and allows us to 
perform optimization in the full space of the values of 
these variables without any restrictions.  

The model of this circuit includes two equations 
corresponding to Kirchhoff’s laws. The objective function 
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C(X) is determined by the formula C(X)=(x5-m1)
2
+((x4-x5)-

m2)
2
, where m1 and m2 are predetermined values of the 

divider voltages. This circuit is characterised by two (M=2) 
dependent parameters (x4, x5), and three (K=3) independent 
parameters (x1, x2, x3). The control vector has the next 
structure: U=(u1, u2). The structural basis of the various 
strategies includes four strategies with the following 
control vectors: (00), (01), (10), and (11). The mathematic 
model of the circuit is determined by the next equations: 

0))()(()1()( 2

24

2

5454

2

141  xxxxbaxxxxXg
 
 (15) 

0))()(()( 2

25

2

54542  xxxxbaxxXg
  

 
It is from the solution of system (15) that the values of 

the dependent variables x4, x5 can be determined and then 
the value of the objective function C(X) can be calculated. 
In the case of the transformation of the two dependent 
variables x4, x5 (or at least one of them) into independent 
ones, it is necessary to form a generalized objective 
function F(X,U) according to the following formula: 

 /))()(()(),( 2

22

2

11 XguXguXCUXF  

Consider the optimization problem for the circuit 
shown in Fig. 2. Let a = 1, b = 1, m1=0.2, and m2=0.25. For 
the example analyzed, the length L of the chromosomes 
varied from 20 to 80 for each of the five variables, and the 
number NN of chromosomes in the population varied from 
60 to 320. Variable limits are specified in a normalized 
form; for variables x1, x2, x3, they were set from 10

-5
 to 2.0, 

and for variables x4, x5 from 10
-3

 to 1.0. Matrix X has five 
rows (N = 5) and NN columns. 

It is important to note that the required accuracy of 
minimizing the objective function F(X,U) has a significant 
impact on the optimization process and its characteristics. 
Each of the four strategies has its own convergence 
accuracy. Table 1 shows the results reflecting the potential 
accuracy ε of the optimization process that each strategy 
can achieve and the number of generations required to 
obtain a solution with precision δ = 10-5. 

 

Table 1 

Potential accuracy ε and number of generations 

N 
Control 

vector 

Potential 

accuracy ε 

Number of 
generations 

for δ =10-5  

1 (00) 1.69·10-5 No solution 

2 (01) 2.04·10-5 No solution 

3 (10) 6.05·10-6 77 

4 (11) 2.87·10-5 No solution 

Table 1 reveals that for an error of 1.6·10
-5

 or less in 
obtaining the solution, only one of the strategies, namely 
strategy (10), will allow solving the problem. In this case, 
77 generations are required. Other strategies, including the 
traditional strategy (00), cannot find solutions for any 

number of steps in the optimization procedure. It is 
possible to propose the structure of a composite strategy 
consisting of two, three, or more different strategies. In this 
case, it is important to obtain the optimal position of the 
switching points from one strategy to another. Table 2 
shows the results of some composite strategies with 
optimal switching point Sp that can significantly improve 
the accuracy of solving the problem. This table contains 
data for six composite strategies, each of which consists of 
two strategies in Table 1. As can be seen, the accuracy of 
the solution was improved by 2 to 3 orders of magnitude. 

However, the results presented in Table 2 show that 
complex strategies allow solving the problem with much 
more stringent requirements for the accuracy of the 
solution obtained.  

Table 2 

Potential accuracy ε and number of generations for 

complex single switching point strategies 

N Control  

vector 

 

Sp 

 

 

 
   ε 

   

Number of generations G for 

various precision δ 

 
   10-5                                  10-6 10-7 10-8 

1 
(01) (00) 13 3.94 

·10-8 
31 35 44 51 

2 
(10) (00) 2 3.94 

·10-8 
32 38 44 49 

3 
(11) (00) 8 3.94 

·10-8 

31 38 44 57 

4 
(00) (01) 20 10-7 34 46 62  - 

5 
(00) (10) 16 6.75 

·10-7 

35 57  -  - 

6 
(00) (11) 20 7.22 

·10-7 

44 72  -  - 

 

This table provides data on the potential accuracy 
achievable for various compound strategies at the optimum 
position of switching point. The results of the optimization 
process are also presented in the form of the required 
number of GA populations at which the required accuracy 

  is achieved. Some composite strategies can solve the 

problem up to 10
-8

 accuracy. 

Fig. 3 shows the dependence of the minimized function 
F on the number of generations G for three strategies 
corresponding to three variants of calculating the fitness 
function for precision δ = 10-6. These dependences are 
plotted for two scales - large (Fig. 3(a)) and small, which 
corresponds to the inner region of the ellipse in the first 
figure (Fig. 3(b)). The composite strategy includes two 
strategies (01) and (00) with the switching point between 
them Sp=13. Simple strategies (00) and (11) do not 
achieve the required accuracy δ = 10-6, but the composite 
strategy solves the problem in 35 generations. 
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(a) Large scale 

 

 
  

(b) Small scale 

Fig. 3.  Minimized function F for strategies (00), (11) and 

(01)(00) on the number of generations G 

 The obtained result shows that the change in the 
structure of the fitness function in the course of the 
optimization algorithm allows us to bypass local minima 
and overcome premature convergence. Such an 
improvement in the accuracy of the solution leads to a 
significant reduction in the number of GA generations 
needed to obtain the required accuracy. 

B. Example 2 

Let's analyze the optimization process of the nonlinear 
circuit shown in Fig. 4.  

The conductivities y1, y2, y3 are positive and compose 
the set of non-dependent parameters of the circuit (K=3). 
Nodal voltages V1, V2, V3 for nodes 1, 2 and 3 are the 
dependent parameters (M=3). Let's define a vector of 
variables X ϵ R6

, including six components (x1, x2, x3, x4, x5, 
x6): x1

2
 =y1, x2

2
 =y2, x3

2
 =y3, x4 =V1, x5 =V2, x6 =V3. A static 

Ebers-Moll model of transistor was used [20]. 

The objective function C(X) of the optimization process was 

determined as the sum of the squares of the differences between 

the previously specified and current values of the nodal voltages:  

   


 
M

i

iiK VxXC
1

2

0 )(  (17) 

where V10,V20,V30 are the before-defined values of nodal 
voltages. 

 

Fig. 4.  Single-stage amplifier 

The circuit model is defined by Kirchhoff's law as: 

    02

1401  xxEIXg B   

     
  05

2

22  xxIXg E   (18) 

 
    02

3613  xxEIXg C    
where IB, IE, IC – are the base, emitter and collector 
currents, respectively. This system serves as a system of 
constraints for minimizing the objective function C(X). The 
control vector includes three components U=(u1,u2,u3). 
Using the generalized approach, we transform system (18) 
into system (19). 

     01  Xgu jj
, j=1,2,3. (19) 

The generalized objective function is defined by the 
following formula: 

   



3

1

2 )(
1

)(,
j

jj XguXCUXF


 (20) 

Table 3 shows the number of generations required to 
achieve the minimum of the function F with accuracy δ for 
three strategies. The first two are TSO with control vector 
U = (0,0,0) and MTS with control vector U = (1,1,1). The 
third strategy is a combined strategy defined by the control 
vector (000)(111) with one switching point Sp = 9. 

That is, the first nine iterations correspond to the 
traditional strategy (000), and the next ones correspond to 
the strategy (111). It can be seen that when using the 
traditional strategy, the required number of generations is 
much larger than in the case of the modified traditional 
strategy and the combined strategy to achieve the same 
accuracy. 

In addition, the traditional strategy does not provide a 
good accuracy of achieving the minimum of the objective 
function. When the required error is 10

-4
 or less, no 

solution based on the traditional strategy is found. At the 
same time, the modified strategy (111) and the combined 
strategy, consisting of two strategies (000) and (111), find 
a solution with an accuracy of 5·10

-11
. Note that the 
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combined strategy finds a solution to the problem in a 
significantly fewer generations. 

Table 3 

Number of  generations G for strategies (000),  (111) and 
(000)(111) for different precision δ 

 

Precision δ 

Control 

vector 

(000) 

Control 

vector 

(111) 

Control 

vector 

(000)(111) 

   Sp=9 

10
-1

 137 36 27 

10
-2

 20706 47 32 

10
-3

 348514 63 38 

10
-4

 - 77 42 

10
-5

 - 88 49 

10
-6

 - 102 59 

10
-7

 - 109 69 

10
-8

 - 123 76 

10
-9

 - 144 89 

10
-10

 - 172 99 

5·10
-11

 - 210 108 

10
-11

 - - - 

It can be seen that the gain in the number of iterations 
(number of generations) for the combined strategy and 
MTS is three to four orders of magnitude compared to the 
traditional one, if the traditional strategy as a whole is able 
to find a solution. The reduction in CPU time is even 
greater, since the time of one iteration of the modified 
strategy is much less than the traditional one. 

It is clear that the final result of the combined strategy 
depends on the switching point from one strategy to 
another. Table 4 shows the dependence of the number of 
generations on the switching point for predetermined error 
δ =10

-5
. It can be seen that the switching point significantly 

affects the number of generations required to achieve the 
necessary accuracy. The minimum value for this combined 
strategy corresponds to the switching point Sp = 9. 

Table 4 

Number of  generations G for combined strategy 
(000)(111) for different switching points Sp 

Control 

vector 

(000), 

(111) 

2 3 4 8 9 10 11 12 

     G 67 56 96 53 49 52 99 57 

Table 5 contains information for the three considered 
strategies, summarizing their comparative characteristics 
when achieving an accuracy of 10

-2
 and 10

-3
 for the 

minimized objective function. The numerical values of the 
number of generations, the CPU time  of  all  strategies,  as 
well as the comparative gain for the MTS and for the 
combined strategy, both in the number of generations and 
in the CPU time compared to TSO, are given. Note that 
TSO does not allow finding a solution to the problem with 

the required error less than 10-3. It can be seen that both 
the MTS and the combined strategy provide a large gain 
over TSO. 

Table 5 

Generalized comparative characteristics for three 
different strategies 

Precision 
   δ 

Control 
vector 

(000) (111) (000)(111) 
  Sp=9 

 
 
   10

-2
 

Number of 
generations 

20706 47 32 

Gain in the 
number of 
generations 

 440 647 

CPU time 
(s) 

1178.15 0.266 0.244 

Time gain  4429 4828 

 
 
   10

-3
 

Number of  
generations 

348514 63 38 

Gain in the 
number of 
generations 

 5532 9171 

CPU time 
(s) 

20518.2 0.353 0.276 

Time gain  58124 74340 

 

With an error of 10
-2

, the gain in terms of the number 
of generations is more than two orders of magnitude, and 
in terms of CPU time, more than three orders of 
magnitude. With a given error of 10

-3
, the gain in terms of 

the number of generations is 3-4 orders of magnitude, and 
in terms of computing time, it is almost five orders of 
magnitude. 

The information presented in this table is the main 
practical result of the work. It can be stated that the use of 
a generalized approach that changes the structure of the 
vector of basic variables X and the shape of the fitness 
function makes it possible to overcome the problem of the 
GA's premature convergence to a local minimum. In this 
case new strategies appear that can substantially increase 
the accuracy of solving the problem and significantly speed 
up the optimization procedure. 

 

Fig. 5.  Minimized function F for strategies (000), (111) and 
(000)(111) on the number of generations G 



85 

 

Fig. 5 shows the dependence of the function F to be 
minimized on the number of generations G for the three 
strategies (000), (111) and combines strategy (000)(111) at 
a given accuracy of 10

-5
. 

Traditional strategy of optimization cannot find a 
solution to the problem with the required accuracy. On the 
contrary, it is obvious that the modified traditional strategy 
and the combined strategy find a solution to the task rather 
quickly. Thus, we can conclude that new optimization 
strategies that appear within the framework of the 
presented generalized approach have good prospects for 
improving the optimization process of electronic circuits. 

IV. CONCLUSIONS 

A generalized approach in terms of control theory to 
solving the problem of optimizing electronic circuits using 
deterministic optimization methods was developed earlier. 
The obtained algorithms have shown high efficiency in 
comparison with the traditional approach in terms of both 
accuracy and speed. 

This paper demonstrates the possibility of embedding 

the idea of generalized optimization into the body of 

stochastic optimization methods. It was shown that this 

approach can be built into GA, which leads to the 

formation of a set of different optimization strategies and 

a significant improvement in the main characteristics of 

GA. 

The studied examples demonstrate the practical 
implementation of a modified GA based on a generalized 
approach for solving the problem of optimizing electronic 
circuits. The emerging new optimization strategies make it 
possible to increase the accuracy of the problem solution 
by several orders of magnitude. It should also be 
emphasized that the real gain of these strategies in CPU 
time compared to the traditional approach is much higher 
than the gain in the number of GA populations. This is due 
to the fact that the processor time for evaluating the fitness 
function for new strategies is much less than in the 
traditional case. 
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Аннотация — Решение задачи оптимизации схемы 

получено на основе комбинации генетического 

алгоритма (ГА) и идеи обобщенной оптимизации, 

разработанной ранее для детерминированного случая. 

Показано, что такая модификация ГА позволяет 

преодолеть преждевременную сходимость к локальным 

минимумам и на несколько порядков повысить точность 

минимизации. В этом случае ГА формирует множество 

популяций, определяемых фитнес-функцией, заданной 

по-разному, в зависимости от стратегии, выбранной в 

рамках идеи обобщенной оптимизации. Способ задания 

фитнес-функций, а также длина и структура хромосом 

определяются искусственно введенным управляющим 

вектором в рамках обобщенной оптимизации.  Этот 

вектор определяет количество независимых переменных 

задачи оптимизации и метод вычисления фитнес-

функции. Он позволяет строить составные стратегии, 

значительно повышающие точность получаемого 

решения. Это, в свою очередь, позволяет уменьшить 

количество генераций, необходимых при работе ГА, и 

минимизировать процессорное время на решение задачи 

оптимизации схемы. 

Ключевые слова — обобщенная оптимизация, ГА, 

оптимизация схемы, вектор управления, набор 

стратегий. 
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